1. Home
  2. Training Library
  3. Amazon Web Services
  4. Courses
  5. AWS Big Data Specialty - Data Collection

Snowball Wrap-Up

play-arrow
Start course
Overview
DifficultyIntermediate
Duration1h 7m
Students1559
Ratings
4.8/5
starstarstarstarstar-half

Description

In course one of the AWS Big Data Specialty Data Collection learning path we explain the various data collection methods and techniques for determining the operational characteristics of a collection system. We explore how to define a collection system able to handle the frequency of data change and the type of data being ingested. We identify how to enforce data properties such as order, data structure, and metadata, and to ensure the durability and availability for our collection approach  

Learning Objectives

  • Recognize and explain the operational characteristics of a collection system.
  • Recognize and explain how a collection system can be designed to handle the frequency of data change and the type of data being ingested.
  • Recognize and identify properties that may need to be enforced by a collection system.

Intended Audience

This course is intended for students looking to increase their knowledge of data collection methods and techniques with big data solutions.

Prerequisites

While there are no formal prerequisites, students will benefit from having a basic understanding of analytics services available in AWS. Please take a look at our Analytics Fundamentals for AWS

This Course Includes

  • 45 minutes of high-definition videos
  • Live hands-on demos

What You'll Learn

  • Introduction to Collecting Data: In this lesson, we'll prepare you for what we'll be covering in the course; the Big Data collection services of AWS Data Pipeline, Amazon Kinesis, and AWS Snowball.
  • Introduction to Data Pipeline: In this lesson, we'll discuss the basics of Data Pipeline.
  • AWS Data Pipeline Architecture: In this lesson, we'll go into more detail about the architecture that underpins the AWS Data Pipeline Big Data Service.
  • AWS Data Pipeline Core Concepts: In this lesson, we'll discuss how we define data nodes, access, activities, schedules, and resources.
  • AWS Data Pipeline Reference Architecture: In this lesson, we'll look at a real-life scenario of how data pipeline can be used.
  • Introduction to AWS Kinesis: In this lesson, we'll take a top-level view of Kinesis and its uses.
  • Kinesis Streams Architecture: In this lesson, we'll look at the architecture that underpins Kinesis.
  • Kinesis Streams Core Concepts: In this lesson, we'll dig deeper into the data records.
  • Kinesis Streams Firehose Architecture: In this lesson, we'll look at firehose architecture and the differences between it and Amazon Kinesis Streams.
  • Firehose Core Concepts: Let's take a deeper look at some details about the Firehose service.
  • Kinesis Wrap-Up: In this summary, we'll look at the differences between Kinesis and Firehose.
  • Introduction to Snowball: Overview of the Snowball Service.
  • Snowball Architecture: Let's have a look at the architecture that underpins the AWS Snowball big data service
  • Snowball Core Concepts: In this lesson, we'll look at the details of how Snowball is engineered to support data transfer.
  • Snowball Wrap-Up: A brief summary of Snowball and our course.

Transcript

As we come to the end of this module on AWS Snowball, let's have a quick look at a customer example from AWS where AWS Snowball has been used. Essess has a number of vehicles deployed across different geographic areas which collect thermal images of buildings to analyze the imagery efficiency performance. The vehicles create a heat mix of thousands of buildings in an electric grid assets every hour and collect more than a petabyte of data each year. There is an AWS Snowball appliance in each vehicle to store the images.

Previously, they had to invest in and manage up to 40 hard drives in each vehicle. Once it's full, the remote team simply drops each AWS Snowball appliance in the mail and the data turns up into Amazon S3 within a few days.

So that brings us to the end of the AWS Snowball Module. I look forward to speaking with you again.

About the Author
Students5126
Courses4

Shane has been emerged in the world of data, analytics and business intelligence for over 20 years, and for the last few years he has been focusing on how Agile processes and cloud computing technologies can be used to accelerate the delivery of data and content to users.

He is an avid user of the AWS cloud platform to help deliver this capability with increased speed and decreased costs. In fact its often hard to shut him up when he is talking about the innovative solutions that AWS can help you to create, or how cool the latest AWS feature is.

Shane hails from the far end of the earth, Wellington New Zealand, a place famous for Hobbits and Kiwifruit. However your more likely to see him partake of a good long black or an even better craft beer.