Case Study

Beginner
6m
6,254
4.8/5

Welcome ​to an introduction to using Artificial Intelligence and Machine Learning with a focus on Amazon Web services and the Google Cloud platform. This lesson​ is designed to be a gentle introduction, starting at the ground up and focusing on giving students the tools and materials they need to navigate the topic. It will also include the necessary skills around data engineering, cloud management and even some systems engineering. There are several labs directly tied to this course, which will provide hands-on experience to supplement the academic knowledge provided in the lectures.

This lesson begins with an introduction to AI and ML, before moving onto explain the different levels of users in the field. Then we take a look at out-of-the-box solutions for AI and ML, before looking at a case study to give you the topics covered during this lesson in a real-world example.

For any feedback relating to this lesson, please contact us at support@cloudacademy.com.

Learning Objectives

By the end of this lesson, you'll hopefully understand how to take more advanced lessons and even a springboard into handling complex tasks in your day-to-day job, whether it be a professional, student, or hobbyist environment.

Intended Audience

This lesson​ is a multi-part series ideal for those who are interested in understanding machine learning from a 101 perspective, and for those wanting to become data engineers. If you already understand concepts such as how to train and inference a model, you may wish to skip ahead to part two or a more advanced course.

Prerequisites

It helps if you have a light data engineering or developer background as several parts of this class, particularly the labs, involve hands-on work and manipulating basic data structures and scripts. The labs all have highly detailed notes to help novice users understand them but you will be able to more easily expand at your own pace with a good baseline understanding. As we explain​ the core concepts, there are some prerequisites for this lesson.

It is recommended that you have a basic familiarity with one of the cloud providers, especially AWS or GCP. Azure, Oracle, and other providers also have machine learning suites but these two are the focus for this class.

If you have an interest in completing the labs for hands on work, Python is a helpful language to understand.

Related Labs

Machine Learning - Training Custom Models

Testing Your Models in the Real World

About the Author
Students
32,130
Labs
31
Courses
13
Learning paths
42

Calculated Systems was founded by experts in Hadoop, Google Cloud and AWS. Calculated Systems enables code-free capture, mapping and transformation of data in the cloud based on Apache NiFi, an open source project originally developed within the NSA. Calculated Systems accelerates time to market for new innovations while maintaining data integrity.  With cloud automation tools, deep industry expertise, and experience productionalizing workloads development cycles are cut down to a fraction of their normal time. The ability to quickly develop large scale data ingestion and processing  decreases the risk companies face in long development cycles. Calculated Systems is one of the industry leaders in Big Data transformation and education of these complex technologies.

Covered Topics