Explanatory vs Associative Approaches - Part 1

Beginner
13m 13s
977

Selecting the right machine learning model will help you find success in your projects. In this module, we’ll discuss how to do so, as well the difference between explanatory and associative approaches, before we end on how to use out-sample performance.  

About the Author
Avatar
Michael Burgess, opens in a new tab
Principal Technologist for Machine Learning
Students
4,928
Courses
9

Michael began programming as a young child, and after freelancing as a teenager, he joined and ran a web start-up during university. Around studying physics and after graduating, he worked as an IT contractor: first in telecoms in 2011 on a cloud digital transformation project; then variously as an interim CTO, Technical Project Manager, Technical Architect and Developer for agile start-ups and multinationals.

His academic work on Machine Learning and Quantum Computation furthered an interest he now pursues as QA's Principal Technologist for Machine Learning. Joining QA in 2015, he authors and teaches programmes on computer science, mathematics and artificial intelligence; and co-owns the data science curriculum at QA.

Covered Topics