Amazon SageMaker notebooks provide a fully-managed environment for machine learning and data science development. You will use a SageMaker notebook instance to train and deploy a machine learning model using Python. You will go through the process of preparing raw data for use with machine learning algorithms. Then you will use a built-in SageMaker algorithm to train a model using the prepared data. Lastly, you will use SageMaker to host the trained model and learn how you can make real-time predictions using the model.
Upon completion of this Lab you will be able to:
pandas
) and the SageMaker Python SDK to:
This lab is intended for:
You should be familiar with:
January 10th, 2022 - Updated notebook to ensure dependencies are up to date
December 2nd, 2020 - Updated code to be compliant with the SageMaker v2 library; Modified code to prevent training job name collisions
Logan has been involved in software development and research since 2007 and has been in the cloud since 2012. He is an AWS Certified DevOps Engineer - Professional, AWS Certified Solutions Architect - Professional, Microsoft Certified Azure Solutions Architect Expert, MCSE: Cloud Platform and Infrastructure, Google Cloud Certified Associate Cloud Engineer, Certified Kubernetes Security Specialist (CKS), Certified Kubernetes Administrator (CKA), Certified Kubernetes Application Developer (CKAD), and Certified OpenStack Administrator (COA). He earned his Ph.D. studying design automation and enjoys all things tech.