What is Deep Learning and Does Your Enterprise Need It?

What is Deep Learning?

The most frequent question asked by my students is: Do I need to learn deep learning? Beyond the buzzwords bounced back and forth in blog posts and news articles, deep learning is probably the most revolutionary technology of the last century. Discovered in the 1950s and 60s, and further developed in the 1990s and early 2000s, deep learning remained mostly an academic topic until 2012, when a team led by Geoffrey Hinton won the Imagenet Challenge using an algorithm based on deep learning.

Although 2012 seems relatively recent, interest in deep learning exploded since then, as you can see in the chart below from Google Trends.

Deep Learning - Google Trends

Deep Learning Explained

Deep Learning Explained (figure from www.zerotodeeplearning.com)
Figure from www.zerotodeeplearning.com

Deep learning is a branch of machine learning that has proven to be formidable in multiple domains and applications ranging from computer vision, natural language processing, speech synthesis, product recommendation, and robotic automation.

Deep learning is based on a technology called an artificial neural network, which is a very configurable mathematical function that can learn complex mappings between pairs of inputs and outputs. For example, a neural network can be trained to recognize objects in images by feeding it with a lot of data pairs (e.g., image and corresponding label). Similarly, it can be trained to translate English to Chinese by feeding it with lots of English sentences as input and the corresponding Chinese sentences as output.

If deep learning is just another machine learning technique, why has it become so popular and in high demand?

The main reason for the success of deep learning is that it works incredibly well with unstructured data, such as images, text, sound, time-series of events and so on. Traditional machine learning is capable of finding relations between pairs of input and output data represented as numbers. For example, a bank that is developing an application to score loans, will use known information about its customers and their past loans to train a machine learning model. In this case, both the input and output data are numbers, and traditional machine learning does a fairly good job.

In contrast, developing a computer vision system to recognize objects requires learning to represent images as numbers, a process called feature extraction. Deep learning is particularly suited to learn the best features to solve a problem, using large amounts of data for training.

Success Stories of Deep Learning in Enterprise

According to Andrew Ng, the current deep learning revolution is akin to the invention of electricity, where a single technology became embedded in thousands of products and businesses, and it completely revolutionized society. In his book AI Superpowers, Kai-fu Lee further expands on this concept, explaining that we live in an era of implementation, where engineering talent, data, and computing power are the main drivers for the application of AI in the enterprise, and not necessarily the availability of a rockstar AI researcher in your team.

This fact, combined with even cheaper computing, large datasets and open source frameworks like Tensorflow and Keras, brought deep learning into the enterprise, unlocking tremendous pools of value. Google, one of the companies at the forefront of the deep learning revolution, is including deep learning features in its products (e.g., autocomplete suggestions for Gmail, image search for photos, language translations, etc.). In addition, Google is using deep learning to optimize its business internally to improve search results, reduce the energy consumption of its data centers, and thousands of other projects. While other technology giants like Amazon, Facebook, Microsoft, Baidu, and Alibaba are similarly embedding deep learning in their products, enterprise players are also starting to find useful applications for deep learning technology.

Change Healthcare, a healthcare technology company with 15,000+ employees, has recently unveiled a Claims Lifecycle AI capable of predicting healthcare service denials, representing $6.2 billion in forecasted allowed amounts and millions in potential administrative savings for the U.S. healthcare system. Companies like Arterys and Enlitic are deploying deep learning models to automate the analysis of medical imaging to detect cancer and heart diseases. Banks and insurance companies apply machine learning and deep learning to solve several issues. For example, Visa uses it to tackle fraud and Capital One uses it to improve customer experience.

How to Evaluate if Your Business Could Benefit from Deep Learning

A few simple questions can help you determine if your business could benefit from developing machine learning and deep learning capabilities.

  1. Do you have data?
  2. What kind of data do you have?

Let me expand on each.

1) Deep learning needs data, lots of it. Depending on the application, this may mean tens of thousands, to millions and even billions of records. For example, to train a model that correctly recognizes a thousand different categories of objects in pictures, researchers competing on Imagenet used 1.2 million labeled images. To correctly train a neural network for speech recognition, researchers routinely use hundreds of hours of recorded conversation with corresponding transcription.

This may seem intimidating at first, but you shouldn’t be discouraged if you don’t have large datasets available. For one, your particular problem may be solved with much smaller datasets. There are successful examples of relevant business problems like predicting churn or propensity to buy using only a few thousand data points. Also, if you don’t have data available yet, you may be able to find an open dataset that closely resembles your problem and start prototyping your solution while you collect original data.

2) Although deep learning works with any kind of data, it is particularly suited to work with unstructured data such as images, text and sequences of events. Of these, the most relevant to enterprise is text data. Application of machine learning and deep learning to text data involve sentiment analysis, document classification, topic modeling, automated summarization, and generation of original text from a given prompt and a set of sources. A law firm may use deep learning to sift through thousands of cases to help lawyers find the most relevant ones to use. Similarly, an e-commerce business may use deep learning to recommend relevant products to its users as well as to predict what users may spend or how likely they are to click on an ad.

Conclusion

Deep learning and artificial intelligence are General-Purpose Technologies (GPTs) — a technology that can affect an entire economy and every sector of business and society in the same way electricity, railroads and steam engines did.

Since the impact of deep learning on a problem strongly depends on the amount of data available, early adopters of data collection and deep learning will reap increasing returns on their investment and will advance at increasingly faster rate. This will create a secure defensible competitive barrier against latecomers, because the benefits of AI on products and sales will bring more customers, generating more data to train better models on. This is the reason why all major tech companies are competing to adopt and deploy deep learning as fast as they can, and this is the reason why you should make understanding deep learning a priority for your team. To get trained in deep learning take our video course or our in-person bootcamp.

If you want to catalyze value in your data, visit Catalit‘s website. Catalit is a data science consulting and training company focused on machine learning and deep learning.

Francesco Mosconi

Written by

Francesco Mosconi

Ph.D. in Physics and CEO & Chief Data Scientist at Catalit Data Science. With Catalit Francesco helps Fortune 500 companies to up-skill in Machine Learning and Deep Learning through intensive training programs and strategic advisory. Author of the Zero to Deep Learning book and bootcamp, he is also an instructor at Udemy and Cloud Academy. Formerly co-founder and Chief Data Officer at Spire, a YC-backed company that invented the first consumer wearable device capable of continuously tracking respiration and physical activity. Machine Learning and python expert. Also served as Data Science lead instructor at General Assembly and The Data incubator.


Related Posts

Avatar
Stuart Scott
— July 2, 2019

AWS Machine Learning Services

The speed at which machine learning (ML) is evolving within the cloud industry is exponentially growing, and public cloud providers such as AWS are releasing more and more services and feature updates to run in parallel with the trend and demand of this technology within organizations t...

Read more
  • Amazon Machine Learning
  • AWS
  • AWS re:Invent
  • Machine Learning
Luca Casartelli
Luca Casartelli
— April 19, 2019

4 Key Takeaways from Google Cloud Next ’19

Google Cloud Next ’19 was the flagship Google Cloud Platform developers conference, held in San Francisco’s Moscone Center. I was lucky enough to attend it with Cloud Academy, and got the chance to check out tons of breakout sessions and get great insight firsthand.   Next ’19 was my...

Read more
  • Google Cloud Platform
  • Kubernetes
  • Machine Learning
Avatar
David Santucci
— February 14, 2019

How to Build an Intelligent Chatbot with Python and Dialogflow

Chatbots are a powerful example of artificial intelligence (AI) in use today. Just think about Google Assistant and how intelligent the platform became thanks to machine learning. But, what is a chatbot? How do you create a custom bot for your website? Which technologies can you use to ...

Read more
  • Machine Learning
  • Python
Avatar
Dwayne Monroe
— January 8, 2019

What is Azure Machine Learning

The meal was fantastic, the service was friendly and professional, the setting was cozy, and the company was engaging. As the evening ended, however, there was a slight hiccup as my credit card was declined. There was more than enough money in my account to cover the cost of the (very d...

Read more
  • Machine Learning
Albert Qian
Albert Qian
— September 25, 2018

Microsoft Ignites Cloud Industry With Nadella Keynote

On Monday, Microsoft kicked off its Ignite conference, an annual gathering of developers and IT professionals. Over the next week, attendees will learn about upcoming Microsoft innovations in IoT, artificial intelligence, machine learning, and cloud (all while getting some good networki...

Read more
  • Events
  • IoT
  • Machine Learning
  • Security
Avatar
Guy Hummel and Jeremy Cook
— August 23, 2018

What are the Benefits of Machine Learning in the Cloud?

A Comparison of Machine Learning Services on AWS, Azure, and Google Cloud Artificial intelligence and machine learning are steadily making their way into enterprise applications in areas such as customer support, fraud detection, and business intelligence. There is every reason to beli...

Read more
  • AWS
  • Azure
  • Google Cloud Platform
  • Machine Learning
Avatar
Tyler Stearns
— May 30, 2018

AI-Driven Automated Testing to Enhance Continuous Delivery

The demand for continuous delivery has changed the approach to development and release tools, especially in keeping up with the high demand of DevOps and agile development practices. This has coincided with the emergence of artificial intelligence (AI) and subsequent AI-driven automated...

Read more
  • Machine Learning
Avatar
Cloud Academy Team
— May 3, 2018

New on Cloud Academy: Machine Learning on Google Cloud and AWS, Big Data Analytics, Terraform, and more

A 2017 IDC White Paper "recommend[s] that organizations that want to get the most out of cloud should train a wide range of stakeholders on cloud fundamentals and provide deep training to key technical teams" (emphasis ours). Regular readers of the Cloud Academy blog know we've been tal...

Read more
  • Machine Learning
Stefano Bellasio
Stefano Bellasio
— April 26, 2018

Top Cloud Skills in Demand for 2018: Big Data, AI, Machine Learning

Cloud is a pathway to innovation. Where yesterday’s cloud deployments were about moving an on-premises infrastructure in your data center to a cloud environment, companies today are using cloud platforms to build new features for their products and services that are integrated at a soft...

Read more
  • Big Data
  • GDPR
  • Machine Learning
Avatar
Cloud Academy Team
— March 9, 2018

New on Cloud Academy, March ’18: Machine Learning on AWS and Azure, Docker in Depth, and more

Introduction to Machine Learning on AWS This is your quick-start guide for building and deploying with Amazon Machine Learning. By the end of this learning path, you will be able to apply supervised and unsupervised learning, ML algorithms, deep learning, and deep neural networks on AW...

Read more
  • Cloud Migration
  • Docker
  • Machine Learning
  • Security
Avatar
Logan Rakai
— January 3, 2018

How to Diagnose Cancer with Amazon Machine Learning

A common question in the medical field is: Is it possible to distinguish one class of samples from another, based on some set of measurements? Research investigating this and related medical questions have spurred innovation in medicine and the application of statistical methods and m...

Read more
  • AWS
  • Machine Learning
  • S3
Avatar
Cloud Academy Team
— July 31, 2017

Security, Machine Learning, Containers, and More: New on Cloud Academy!

This week, we’ve got lots of new content to share with you on Cloud Academy! Explore our newest learning paths, video courses, and hands-on labs on AWS, Microsoft Azure, and Google Cloud Platform on security, cloud architecture, containers, and many more topics. Learning Paths AWS Sec...

Read more
  • Machine Learning
  • Security