Working with Distributed Machine Learning


Distributed Machine Learning Concepts
Course Introduction5m 13s
Distributed Machine Learning1m 52s
Apache Spark8m 4s
Spark MLlib2m 44s
Decision Trees3m 4s
Amazon Elastic MapReduce13m 4s
AWS Glue3m 47s
Distributed Machine Learning Demonstration
Download and Save Census Income Dataset7m 39s
Prepare Census Income Dataset10m 53s
Launch EMR Cluster with Spark and Zeppelin13m 33s
Build DecisionTree Model using Zeppelin12m 59s
Course Review
Review1m 26s

Start course

Duration1h 24m 18s



This training course begins with an introduction to the concepts of Distributed Machine Learning. We'll discuss the reasons as to why and when you should consider training your machine learning model within a distributed environment. 

Apache Spark

We’ll introduce you to Apache Spark and how it can be used to perform machine learning both at scale and speed. Apache Spark is an open-source cluster-computing framework.

Amazon Elastic Map Reduce

We’ll introduce you to Amazon’s Elastic MapReduce service, or EMR for short. EMR provides a managed Hadoop framework that makes it easy, fast, and cost-effective to process vast amounts of data. EMR can be easily configured to host Apache Spark.

Spark MLlib

We’ll introduce you to MLlib which is Spark’s machine learning module. We’ll discuss how MLlib can be used to perform various machine learning tasks. For this course, we'll focus our attention on decision trees as a machine learning method which the MLlib module supports. A decision tree is a type of supervised machine learning algorithm used often for classification problems.

AWS Glue

We’ll introduce you to AWS Glue. AWS Glue is a fully managed extract, transform, and load service, ETL for short. We’ll show you how AWS Glue can be used to prepare our datasets before they are used to train our machine learning models.


Finally, we’ll show you how to use each of the aforementioned services together to launch an EMR cluster configured and pre-installed with Apache Spark for the purpose of training a machine learning model using a decision tree. This demonstration will provide an end-to-end solution that provides machine learning predictive capabilities.

Intended Audience

The intended audience for this course includes:

  • Data scientists and/or data analysts
  • Anyone interested in learning and performing distributed machine learning, or machine learning at scale
  • Anyone with an interest in Apache Spark and/or Amazon Elastic MapReduce

Learning Objectives

By completing this course, you will: 

  • Understand what Distributed machine learning is and what it offers
  • Understand the benefits of Apache Spark and Elastic MapReduce
  • Understand Spark MLlib as machine learning framework
  • Create your own distributed machine learning environment consisting of Apache Spark, MLlib, and Elastic MapReduce.
  • Understand how to use AWS Glue to perform ETL on your datasets in preparation for training a your machine learning model
  • Know how to operate and execute a Zeppelin notebook, resulting in job submission to your Spark cluster
  • Understand what a machine learning Decision Tree is and how to code one using MLlib


The following prerequisites will be both useful and helpful for this course:

  • A background in statistics or probability
  • Basic understanding of data analytics
  • General development and coding experience
  • AWS VPC networking and IAM security experience (for the demonstrations)

Course Agenda

The agenda for the remainder of this course is as follows:

  • We’ll discuss what Distributed Machine Learning is and when and why you might consider using it
  • We’ll review the Apache Spark application, and its MLlib machine learning module
  • We’ll review the Elastic MapReduce service
  • We’ll provide an understanding what a Decision Tree is - and what types of analytical problems it is suited towards
  • We’ll review the basics of using Apache Zeppelin notebooks - which can be used for interactive machine learning sessions
  • We’ll review AWS Glue. We’ll show you how you can use AWS Glue to perform ETL to prepare our datasets for ingestion into a machine learning pipeline.
  • Finally - We’ll present a demonstration of a fully functional distributed machine learning environment implemented using Spark running on top of an EMR cluster


We welcome all feedback so please direct any comments or questions on this course to us at

About the Author

Learning paths2

Jeremy is a Cloud Researcher and Trainer at Cloud Academy where he specializes in developing technical training documentation for security, AI, and machine learning for both AWS and GCP cloud platforms.

He has a strong background in development and coding, and has been hacking with various languages, frameworks, and systems for the past 20+ years.

In recent times, Jeremy has been focused on Cloud, Security, AI, Machine Learning, DevOps, Infrastructure as Code, and CICD.

Jeremy holds professional certifications for both AWS and GCP platforms.