Google Cloud Platform is currently one of the industry’s leading cloud computing platforms. Google entered the cloud computing market back in 2008 with Google App Engine – a Platform as a Service (PaaS) environment. Google App Engine was followed by BigQuery, a data analytics service in April 2012, and Compute Engine, an Infrastructure as a Service (IaaS) component – becoming generally available in December of 2013. Since then, Google has been regularly launching new cloud services and features.
This post will focus on the five key elements of the Google Cloud Platform.
Google Cloud Platform Regions
Each region in Google’s cloud contains any number of zones. Zones can be considered as isolated geographic locations within a region. Internally, zones are part of low-latency and high bandwidth networks. A zone failure does not affect other zones in that region. For achieving high availability, it is always advisable to deploy your application across multiple zones.
Globally, Google currently has three regions, i.e., us-central1, europe-west1 and asia-east1. These, by region, are the available zones:
REGION | ZONES |
us-central1 | us-central1-a, us-central1-b, us-central1-f |
europe-west1 | europe-west1-a (Deprecated), europe-west1-b, europe-west1-c |
asia-east1 | asia-east1-a, asia-east1-b, asia-east1-c |
Each of these zones supports either Ivy Bridge or Sandy Bridge processors. Specifically, us-central1-f and europe-west1-c zones work with Ivy Bridge, while the others use Sandy Bridge.
Products
Since 2008, Google has launched multiple services for its Google Cloud Platform:
Group | Service Name | Service Description |
Compute | ||
Compute Engine |
|
|
App Engine |
|
|
Container Engine |
|
|
Storage | ||
Cloud SQL |
|
|
Storage |
|
|
Datastore |
|
|
Networking | ||
Elastic Load Balancing |
|
|
Interconnect |
|
|
DNS |
|
|
Big Data | ||
Big Query |
|
|
Dataflow |
|
|
Pub/Sub |
|
|
Management | ||
Deployment Manager |
|
|
Monitoring |
|
Compute Capacity
Google Compute Engine offers a wide range of computation capacity for above-described services. Apart from the wide pool of instance types, Google Compute Engine offers performance tuned instances for different types of workloads i.e., High CPU instance types for CPU intensive applications, High Memory instance types for memory intensive applications, etc.
Google Compute Engine instances are available in four categories: Standard, High CPU, High Memory, and Shared Core. The Standard includes five instance types built within a range between 1VirtualCore, 3.75GBMemory to 16VirtualCore, 60GBMemory. These instances are used for standard workloads. The High CPU category has four instance types with profiles lying between 2VirtualCore, 1.80GBMemory to 16VirtualCore, 14.40GBMemory. Using High Memory, you can choose between four instance types with compute capacities ranging from 2VirtualCore, 13GBMemory to 16VirtualCore, 60GBMemory. Shared Core category instances come in two flavors: f1.micro (1VirtualCore, 0.60GBMemory) and g1.small (1VirtualCore, 1.70GBMemory).
Big data
Google’s ability to deliver search results in milliseconds, serve six billion hours of YouTube video per month or successfully serve their 425 million Gmail users largely depends upon their interactive query service. BigQuery is a public implementation of their own internal query service ‘Dremel.’ It allows them to run SQL-like queries against very large datasets and fetch results in seconds.
According to Google BigData whitepaper, Dremel Can Scan 35 Billion Rows without an Index in Tens of Seconds. Dremel, the cloud-powered massively parallel query service, shares Google’s infrastructure, so it can parallelize each query and run it on tens of thousands of servers simultaneously”. Google uses Dremel for analyzing web documents, spam analysis, and monitoring data center performance.
Besides all this, there are box loads of Google-developed solutions to satisfy big data needs, like BigTable, Chubby, MapReduce, etc. Google also launched DataFlow, a managed data processing service, which will help you to ingest, transform, and analyze data in both batch and streaming modes by creating data pipelines.
Media Management
Google has developed solutions to tackle a wide range of problems and these solutions are massively used by people around the globe. Google search is one of the most popular, followed by Google Mail, YouTube, Google Drive, Google Maps, Adwords, and Google Docs. These serve millions of users on daily basis and themselves effectively run on Google Cloud Platform. With their many services, Google has built an ecosystem which allows you to integrate multiple solutions. For example, an attachment shared on Gmail account can be directly saved into your Google drive, automatically syncing to your mobile device. Or you can seamlessly share your favorite YouTube video directly to your Google+ profile. These integrations make the lives of millions of user a lot easier and flexible. But they can also provide you with powerful cloud computing tools.
To conclude, Google Cloud Platform is an enormous platform used, possibly, by most people currently living on our planet (and a handful in space). Enterprises, SMBs or Start-ups can leverage multiple Google Cloud Platform’s offerings, while individuals use many of the very Google solutions in their daily lives.

