Harnessing the Power of Big Data Analysis on AWS

Like a jigsaw puzzle, there are many components in the AWS big data ecosystem. Read this article and see how the components fit together to form a beautiful whole.

If you are a data engineer, wouldn’t it be great if you could easily scale your existing infrastructure on-demand to support your real-time data pipelines?

If you are a data scientist, wouldn’t it be great if you could leverage massive clusters of computers to conduct analyses on large datasets and build statistical models quickly?

Or, maybe you are playing both roles. Perhaps you are a student and you are trying to find a platform to get started in big data quickly. Whatever your current role might be, be sure to read on to learn more about AWS’s big data capabilities provided by the following services: EMR, DynamoDB, Redshift, Data Pipeline, Kinesis Streams, Machine Learning, Elasticsearch, and Kinesis Firehose. That’s a lot of ground to cover, so let’s get started!

Need a big data platform? Look no further than Amazon Web Services!

AWS is one of the largest and fastest-growing cloud infrastructure providers in the world. Over the past ten years, AWS has developed more than 70 products and services to support different and often very demanding types of cloud computing use cases.

The company dominates the global cloud industry with its market share of more than 30%. Even though Microsoft Azure and Google Cloud Platform are growing rapidly, AWS still witnessed a significant growth of 63% year over year. The brand equity that AWS has built over the years has allowed the company to gain a strong foothold in the increasingly-competitive cloud computing landscape.
AWS has been embracing the big data movement as part of their Infrastructure-as-a-Service platform strategy beginning as early as 2008 — just two years after they were officially launched as a subsidiary of Amazon.com.

In 2008, AWS announced public access to huge data sets such as the map of the human genome and the US census

It all began with an announcement to make available certain large public datasets such as the mapping of the Human Genome and the US Census data on Amazon S3 so that anyone who wants to analyze these datasets can do so easily and quickly by accessing them directly from their Amazon Ec2 instances.
Just to get an idea of how large some of these datasets are, the 1000 Genomes Project that tries to build the most comprehensive catalog of human genetic variation is over 200TB. The 1980, 1990 and 2000 US Census data are approximately 5GB, 50GB and 200GB respectively. AWS is able to leverage their cloud computing infrastructure to host these datasets with the hope of spurring innovation.
Shortly after they introduced these large public datasets, AWS started supporting big data processing by introducing the Amazon Elastic MapReduce (EMR) service in April 2009. Amazon EC2 and S3 are the basic building blocks that make Amazon EMR possible. AWS made incremental improvements and added new features to EMR, and also introduced other big data-related services over the years, which I have summarized chronologically in the following list:

Let’s take a look at the constituent services of the AWS big data infrastructure-as-a-service.

Amazon EMR: Elastic MapReduce Hadoop Service

Amazon EMR is a service that lets you create and manage large-scale distributed data processing clusters easily. Data engineers know that setting up different components in the Hadoop ecosystem and getting them to work well together often requires a lot of effort. Amazon EMR takes care of this burden and lets you focus on the dataset instead.

Amazon EMR supports Hadoop and Spark, along with interactive notebooks like Hue and Zeppelin-Sandbox, as well as machine learning frameworks like Mahout and Spark Mllib. For the full list of supported applications, see the Amazon EMR release page.

I have written a two-part series about using Apache Spark and Apache Zeppelin on Amazon EMR – See Part 1 and Part 2. Check them out. You may find my notes on IAM helpful too.

Cloud Academy offers quizzes around Amazon EMR and you can try them out (and all the Cloud Academy resources) for free.
Big Data AWS

Amazon DynamoDB: Managed NoSQL Databases

Amazon DynamoDB is a fully managed NoSQL database service that you can use to import, persist, and extract schema-less data. You can create DynamoDB tables and populate them with data from CSV files. You can also export data from DynamoDB tables to Amazon S3 buckets as a backup.
Our Database Fundamentals for AWS course gives you an introduction to Amazon DynamoDB. We also have a dedicated course focusing on Working with DynamoDB. At the same time, you should also try our hands-on lab to create and query DynamoDB tables.
amazon courses at Cloud Academy

Amazon Redshift: Industrial-Grade Data Warehousing

Amazon Redshift is a fully managed petabyte-scale data warehouse service. One petabyte is approximately 1,000 terabytes (in case you were going to look it up). You can create and provision an Amazon Redshift cluster to store large amounts of data, and perform fast queries using SQL query tools like SQL Workbench/J or Re:dash. You can also connect your business intelligence application or any other applications as long as it supports the standard PostgresSQL JDBC or OCBC drivers.
We have an introductory blog post, and as you might imagine some detailed learning resources if you would like to find out more.

AWS Data Pipeline: Data Processing Workflow Automation

AWS Data Pipeline lets you define a workflow to automate the processing and moving of data from one AWS service to another on a regular basis. You can create a pipeline to launch EMR jobs that run Hive queries with data imported from Amazon RDS, or backup DynamoDB tables into Amazon S3 every end of business day, or import new data when it is available into Amazon Redshift and send an Amazon SNS notification that new data has been imported into Redshift.
Our Automated Data Management with EBS, S3, and Glacier course shows you the best methods of backing up your data resources using AWS Data Pipeline.

Amazon Kinesis Streams: Streaming Data Service

Amazon Kinesis Streams is a managed service to ingest streaming data from many different sources. It makes the data available to Amazon Kinesis Applications that would read and process the streaming data in real-time. These applications are data consumers that are developed with the Amazon Kinesis API or Amazon Kinesis Client Library (KCL). There is a pre-built library that you can use to integrate Amazon Kinesis Streams with Apache Storm. You can think of this as the AWS’s equivalent of Apache Kafka.
Our blog post from 2015 titled Amazon Kinesis: Managed Real-time Event Processing is a good starting point and I encourage you to review posts from different sources.

Amazon Machine Learning

Amazon Machine Learning is a service that makes it easy for anyone to create machine learning models to do things like classifications or predictions through the use of wizards. You do not need to have a strong grasp of machine learning to use this service, although you are strongly advised to understand what you are doing.

Try Amazon Machine Learning with our hands-on lab using the HAR (Human Activity Recognition) dataset. We also have a course that introduces you to the principles and practice of Amazon Machine Learning.

Amazon Elasticsearch: Distributed Search Engine

Elasticsearch is an open source distributed search and analytics engine that you can use to run full-text queries on large amounts of data to make sense of the data. Amazon Elasticsearch is a managed service that lets you launch Elasticsearch on AWS.

We have a couple of blog posts about our impression of Amazon Elasticsearch when it was first launched, and our comparison with Amazon CloudSearch.

Amazon Kinesis Firehose

Amazon Kinesis Firehose is a managed service that lets you create delivery streams to send streaming data to AWS services such as Amazon S3, Amazon Redshift or Amazon Elasticsearch. Amazon Kinesis Firehose simply reads and writes data, and does not do any processing to the data stream.

Conclusion

As you probably gathered from reading this post, big data isn’t confined to a single area. I included links to useful posts and other articles. Researching this article forced me to see AWS Big Data with fresh eyes. AWS never stands still and that dynamic progress inspires me.

I hope that this blog post inspires you to explore and learn more about the different big data options that are available on AWS. Check out our Analytics Fundamentals for AWS course. The course covers numerous analytics tools including Amazon EMR, Kinesis Streams and Firehose, Machine Learning, Data Pipeline and Elasticsearch.

Have any questions? Leave a comment below!

 

Avatar

Written by

Eugene Teo

Eugene Teo is a director of security at a US-based technology company. He is interested in applying machine learning techniques to solve problems in the security domain.


Related Posts

Alisha Reyes
Alisha Reyes
— December 5, 2019

New on Cloud Academy: AWS Solution Architect Lab Challenge, Azure Hands-on Labs, Foundation Certificate in Cyber Security, and Much More

Now that Thanksgiving is over and the craziness of Black Friday has died down, it's now time for the busiest season of the year. Whether you're a last-minute shopper or you already have your shopping done, the holidays bring so much more excitement than any other time of year. Since our...

Read more
  • AWS
  • AWS solution architect
  • AZ-203
  • Azure
  • cyber security
  • FCCS
  • Foundation Certificate in Cyber Security
  • Google Cloud Platform
  • Kubernetes
Avatar
Cloud Academy Team
— December 4, 2019

Understanding Enterprise Cloud Migration

What is enterprise cloud migration? Cloud migration is about moving your data, applications, and even infrastructure from your on-premises computers or infrastructure to a virtual pool of on-demand, shared resources that offer compute, storage, and network services at scale. Why d...

Read more
  • AWS
  • Azure
  • Data Migration
Wendy Dessler
Wendy Dessler
— November 27, 2019

6 Reasons Why You Should Get an AWS Certification This Year

In the past decade, the rise of cloud computing has been undeniable. Businesses of all sizes are moving their infrastructure and applications to the cloud. This is partly because the cloud allows businesses and their employees to access important information from just about anywhere. ...

Read more
  • AWS
  • Certifications
  • certified
Avatar
Andrea Colangelo
— November 26, 2019

AWS Regions and Availability Zones: The Simplest Explanation You Will Ever Find Around

The basics of AWS Regions and Availability Zones We’re going to treat this article as a sort of AWS 101 — it’ll be a quick primer on AWS Regions and Availability Zones that will be useful for understanding the basics of how AWS infrastructure is organized. We’ll define each section,...

Read more
  • AWS
Avatar
Dzenan Dzevlan
— November 20, 2019

Application Load Balancer vs. Classic Load Balancer

What is an Elastic Load Balancer? This post covers basics of what an Elastic Load Balancer is, and two of its examples: Application Load Balancers and Classic Load Balancers. For additional information — including a comparison that explains Network Load Balancers — check out our post o...

Read more
  • ALB
  • Application Load Balancer
  • AWS
  • Elastic Load Balancer
  • ELB
Albert Qian
Albert Qian
— November 13, 2019

Advantages and Disadvantages of Microservices Architecture

What are microservices? Let's start our discussion by setting a foundation of what microservices are. Microservices are a way of breaking large software projects into loosely coupled modules, which communicate with each other through simple Application Programming Interfaces (APIs). ...

Read more
  • AWS
  • Docker
  • Kubernetes
  • Microservices
Nisar Ahmad
Nisar Ahmad
— November 12, 2019

Kubernetes Services: AWS vs. Azure vs. Google Cloud

Kubernetes is a popular open-source container orchestration platform that allows us to deploy and manage multi-container applications at scale. Businesses are rapidly adopting this revolutionary technology to modernize their applications. Cloud service providers — such as Amazon Web Ser...

Read more
  • AWS
  • Azure
  • Google Cloud
  • Kubernetes
Avatar
Stuart Scott
— October 31, 2019

AWS Internet of Things (IoT): The 3 Services You Need to Know

The Internet of Things (IoT) embeds technology into any physical thing to enable never-before-seen levels of connectivity. IoT is revolutionizing industries and creating many new market opportunities. Cloud services play an important role in enabling deployment of IoT solutions that min...

Read more
  • AWS
  • AWS IoT Events
  • AWS IoT SiteWise
  • AWS IoT Things Graph
  • IoT
Avatar
Cloud Academy Team
— October 23, 2019

Which Certifications Should I Get?

As we mentioned in an earlier post, the old AWS slogan, “Cloud is the new normal” is indeed a reality today. Really, cloud has been the new normal for a while now and getting credentials has become an increasingly effective way to quickly showcase your abilities to recruiters and compan...

Read more
  • AWS
  • Azure
  • Certifications
  • Cloud Computing
  • Google Cloud Platform
Valery Calderón Briz
Valery Calderón Briz
— October 22, 2019

How to Go Serverless Like a Pro

So, no servers? Yeah, I checked and there are definitely no servers. Well...the cloud service providers do need servers to host and run the code, but we don’t have to worry about it. Which operating system to use, how and when to run the instances, the scalability, and all the arch...

Read more
  • AWS
  • Lambda
  • Serverless
Avatar
Stuart Scott
— October 16, 2019

AWS Security: Bastion Hosts, NAT instances and VPC Peering

Effective security requires close control over your data and resources. Bastion hosts, NAT instances, and VPC peering can help you secure your AWS infrastructure. Welcome to part four of my AWS Security overview. In part three, we looked at network security at the subnet level. This ti...

Read more
  • AWS
Avatar
Sudhi Seshachala
— October 9, 2019

Top 13 Amazon Virtual Private Cloud (VPC) Best Practices

Amazon Virtual Private Cloud (VPC) brings a host of advantages to the table, including static private IP addresses, Elastic Network Interfaces, secure bastion host setup, DHCP options, Advanced Network Access Control, predictable internal IP ranges, VPN connectivity, movement of interna...

Read more
  • AWS
  • best practices
  • VPC