Amazon Elastic Inference – GPU Acceleration for Faster Inferencing

“Add GPU acceleration to any Amazon EC2 instance for faster inference at much lower cost (up to 75% savings)”

So you’ve just kicked off the training phase of your multilayered deep neural network. The training phase is leveraging Amazon EC2 P3 instances to keep the training time to a minimum, but it’s still going to take a while. With time in hand, you begin to contemplate what infrastructure you’ll use to run your inferences.

You’re already familiar with the merits of using GPUs for the training phase. GPUs have the ability to parallelize massive amounts of simple math computations, which makes them perfect for training neural networks. GPUs are more expensive to run than CPUs, but because they can parallelize the number crunching, you don’t need to run them as long as you would the equivalent training performed on CPUs. In fact, training on GPUs can be orders-of-magnitude quicker. So it may cost you more per hour to run a GPU, but you won’t need to run it anywhere nearly as long when on a CPU. Besides factoring in cost, training your models faster allows you to get them into production quicker to perform inferences. So in terms of the training phase, it makes complete sense to go with GPUs.

So your contemplation now focuses on whether to use GPU or CPU infrastructure to perform inferencing once the training completes and your model is ready. We know that GPUs cost more per hour to run. Performing inferences through a trained neural network are far less taxing in terms of required computation and data volume that needs to be ingested and processed. Therefore, CPUs seem to be the way to go. However, you know from past experiences that over time, your CPU hosted inferencing tends to bottleneck due to overwhelming demand and this makes you reconsider running the inferencing on GPUs, but you now need to budget in the extra cost as a project consideration. This dilemma of whether to use GPUs versus CPUs for inferencing, with respect to both cost and performance is all too familiar for many organizations. The choice of using a GPU or CPU was a fairly mutually exclusive upfront decision made when using EC2. As of today, this is no longer the case.

Amazon Elastic Inference

Amazon Elastic Inference is a new service from AWS which allows you to complement your EC2 CPU instances with GPU acceleration, which is perfect for hosting your inferencing models. You can now select the appropriate CPU sized EC2 instance and boost its number crunching ability with GPU processing. Like with many other AWS services, you only pay for the actual accelerator hours you use. What this means is that you can get full GPU processing power but being up to 75% cheaper than running an equivalent GPU sized EC2 instance.

See: https://aws.amazon.com/machine-learning/elastic-inference/
(You might also want to read up on this year’s announcements from re:Invent, particularly our blog post on how Amazon FSx for Lustre Makes High Performance Computing More Accessible.)

For starters, Amazon Elastic Inference is launching with 3 types of Teraflop mixed precision powered accelerators: eia1.medium, eia1.large, and the eia1.xlarge

Elastic Inferencing GPU Types

Amazon Elastic Inference has been seamlessly integrated into both the AWS EC2 console and the AWS CLI. In the following EC2 console screenshot, attaching GPU acceleration, is as simple as enabling the “Add an Elastic Inference accelerator” option:

AWS EC2 Console - Elastic Inferencing

The equivalent AWS CLI command looks like the following, noting that the existing API has been extended with a new optional elastic-inference-accelerator parameter:

aws ec2 run-instances \ 
--image-id ami-00ffbd996ef2211e3 \
--key-name DNN_Key
--security-group-ids sg-12345678 \
--subnet-id subnet-12345678 \ 
--instance-type c5.xlarge \
--elastic-inference-accelerator Type=eia1.large
--iam-instance-profile Name="InferenceAcceleratorProfile"

The following list itemizes several prerequisites that need to be in place to leverage Amazon Elastic Inference:

  • A Private Link endpoint configured for Elastic Inference must be present
  • An IAM role with the necessary policies to connect to the Elastic Inference accelerator
  • Build your models using TensorFlow, Apache MXNet, and/or ONNX
  • Use the latest AWS Deep learning AMIs, which have been updated with Amazon Elastic Inference support baked directly into the TensorFlow, Apache MXNet deep learning frameworks
Deep Learning AMIs - Elastic Inferencing Enabled

As you can see with a few extra configuration options in place you can have the best of both worlds, CPU hosted inferencing with GPU acceleration. You no longer need to spend time contemplating CPUs over GPUs – take both!!

Another game changer in the machine learning space from AWS – give it a try and check out our Lab on Analyzing CPU vs GPU Performance for AWS Machine Learning.

Avatar

Written by

Jeremy Cook

Jeremy is currently employed as a Cloud Researcher and Trainer - and operates within CloudAcademy's content provider team authoring technical training documentation for both AWS and GCP cloud platforms. Jeremy has achieved AWS Certified Solutions Architect - Professional Level, and GCP Qualified Systems Operations Professional certifications.


Related Posts

Connie Benton
Connie Benton
— April 1, 2020

How To Build a Career with AWS Certifications

From Iaas and PaaS solutions to digital marketing, cloud computing reshapes the world of technology. As the influence of this technology grows, so does investment. Tens of billions of dollars are being spent on cloud computing-related services each year. This influx is continuing to inc...

Read more
  • AWS
  • Certifications
Vijayakumar Athithan
Vijayakumar Athithan
— March 27, 2020

What is Cognito in AWS?

Web applications usually allow a valid username and password combination for successful sign in to the application. Modern authentication flows incorporate more approaches to ensure user authentication. When using AWS, this is no exception, thanks to the abilities and features offered b...

Read more
  • AWS
  • AWS Cognito
  • Solutions Architect
Avatar
Andrew Larkin
— March 20, 2020

The 12 AWS Certifications: Which is Right for You and Your Team?

As companies increasingly shift workloads to the public cloud, cloud computing has moved from a nice-to-have to a core competency in the enterprise. This shift requires a new set of skills to design, deploy, and manage applications in cloud computing. As the market leader and most ma...

Read more
  • AWS
  • AWS Certifications
Alisha Reyes
Alisha Reyes
— March 17, 2020

Cloud Academy’s Blog Digest: How Do AWS Certifications Increase Your Employability, How to Become a Microsoft Certified Azure Data Engineer, and more

With everything going on right now, it's likely that the only thing you've been reading lately is related to the coronavirus pandemic. It's important to stay informed during these times, but it's also good to jump into something that can take your mind off of the current situation for j...

Read more
  • AWS
  • Azure
  • blog digest
  • Certifications
  • Cloud Academy
  • programming
  • Security
Avatar
Cloud Academy Team
— March 13, 2020

Which Certifications Should I Get?

As we mentioned in an earlier post, the old AWS slogan, “Cloud is the new normal” is indeed a reality today. Really, cloud has been the new normal for a while now and getting credentials has become an increasingly effective way to quickly showcase your abilities to recruiters and compan...

Read more
  • AWS
  • Azure
  • Certifications
  • Cloud Computing
  • Google Cloud Platform
Alisha Reyes
Alisha Reyes
— March 7, 2020

New on Cloud Academy: Intro to GitOps; AWS Courses; Java, Python, Amazon Linux 2, Ubuntu, & Docker Playgrounds; and much more

New Lab Playgrounds This month, our Content Team released six new "playground labs." Our playground labs provide a safe and secure sandbox environment for you to explore your own ideas, follow along with Cloud Academy courses, or answer your own questions — all without having to instal...

Read more
  • AWS
  • Azure
  • gitops
  • Google Cloud Platform
  • lab playground
  • programming
Alisha Reyes
Alisha Reyes
— March 6, 2020

New on Cloud Academy: Intro to GitOps; AWS Courses; Java, Python, Amazon Linux 2, Ubuntu, & Docker Playgrounds; and much more

New Lab Playgrounds This month, our Content Team released six new "playground labs." Our playground labs provide a safe and secure sandbox environment for you to explore your own ideas, follow along with Cloud Academy courses, or answer your own questions — all without having to instal...

Read more
  • AWS
  • Azure
  • gitops
  • Google Cloud Platform
  • lab playground
  • programming
Patrick Navarro
Patrick Navarro
— March 4, 2020

AWS Certifications: How Do They Increase Your Employability and Progress Your Career?

AWS certifications are no walk in the park. They’re designed to validate in-depth, specialist knowledge and comprehensive experience, often requiring months of dedicated studying to earn even for those already working with the cloud platform. But the rewards that AWS professionals ca...

Read more
  • AWS
  • AWS certification
  • certification
Avatar
Chandan Patra
— February 21, 2020

Elasticsearch vs. CloudSearch: AWS Cloud Search Choices

Elasticsearch vs. CloudSearch: What's the main difference? Let's compare AWS-based cloud tools: Elasticsearch vs. CloudSearch. While both services use proven technologies, Elasticsearch is more popular, open source, and has a flexible API to use for customization; in comparison, CloudS...

Read more
  • AWS
  • Azure
  • cloudsearch
  • elasticsearch
Avatar
Andrew Larkin
— February 13, 2020

Cloud Academy Content Roadmap Updates

Welcome to our Q1 2020 roadmap. This is the content we plan to build over the next three months, between February 1 - and April 30, 2020. Let's look at some of our roadmap highlights. Atlassian Bamboo for CI/CD We had a lot of requests for practical guides on how to apply DevOps tool...

Read more
  • Artificial Intelligence
  • AWS
  • Azure
  • Docker
  • Google Cloud Platform
  • Kubernetes
  • Machine Learning
Alisha Reyes
Alisha Reyes
— February 7, 2020

New on Cloud Academy: Git Labs, CKA and CKAD Lab Challenges, AWS and Azure Learning Paths, AGILE, and Much More

We just kicked off our first Free Weekend of 2020. This means we've unlocked our Training Library for just 72 hours. Until Sunday at 11:59 pm (PST), you can get unlimited access to our industry-leading learning paths, courses, certification prep exams, and our most popular hands-on labs...

Read more
  • agile
  • AWS
  • Azure
  • Google Cloud Platform
  • Linux
  • OWASP
  • programming
  • red hat
  • scrum
Avatar
Stuart Scott
— February 6, 2020

How to Encrypt an EBS Volume

Keeping data and applications safe in the cloud is one of the most visible challenges facing cloud teams in 2020. Cloud storage services where data resides are frequently a target for hackers, not because the services are inherently weak but because they are often improperly configured....

Read more
  • AWS
  • EBS
  • Encryption