Advantages and Disadvantages of Microservices Architecture

What are microservices?

Let’s start our discussion by setting a foundation of what microservices are. Microservices are a way of breaking large software projects into loosely coupled modules, which communicate with each other through simple Application Programming Interfaces (APIs).

Microservices have become increasingly popular over the past few years. They are an example of the modular architectural style, based on the philosophy of breaking large software projects into smaller, independent, and loosely coupled parts, which has gained prominence among developers for its dynamic and agile qualities in API management and execution of highly defined and discrete tasks.

Simply stated, microservices are really nothing more than another architectural solution for designing complex – mostly web-based – applications. Microservices have gained prominence as an evolution from SOA (Service Oriented Architecture), an approach that was designed to overcome the disadvantages of traditional monolithic architectures. In this blog post, we’ll explore the evolution of development from monolithic architectures toward microservices and its underlying justifications, as well as the pros and cons of microservices.

If you’re new to microservices, you can check out Cloud Academy’s Training Library. From beginner to advanced, the Training Library is loaded with courses to introduce you to microservices or advance your skills on how to build microservices solutions or APIs.

Cloud Academy Microservices Library

The history of microservices

Let’s start with a simple example: Suppose I need to build a classic web application using Java. The first thing I will do is design a Presentation Layer (the user interface), followed by an Application Layer, which handles all of the business logic. This is followed by an Integration Layer to enable loose coupling between various components of the Application Layer. Finally, I will design a Database Layer that will be accessible to the underlying persistence system.

To run the entire application, I will create either a EAR or WAR package and deploy it on an application server (like JBoss, Tomcat, or WebLogic). Because I have packaged everything as an EAR/WAR, my application becomes monolithic in nature, which means that even though we have separate and distinguishable components, all are packaged together.

Here’s an illustration of an example monolithic architecture:

Monolithic Application Diagram

You may already be familiar with the characteristics of monolithic applications depending on your development experience. However, this example also stands to illustrate some of the challenges developers and architects face with this kind of design.

Here are the flaws:

  • As the application grows, so does the associated code base, which can overload your development environment each time it loads the application, reducing developer productivity.
  • Because the application has been packaged in one EAR/WAR, changing the technology stack of the application becomes a difficult task. With this kind of architecture, refactoring the code base becomes difficult because it’s hard to predict how it will impact application functionality.
  • If any single application function or component fails, then the entire application goes down. Imagine a web application with separate functions including payment, login, and history. If a particular function starts consuming more processing power, the entire application’s performance will be compromised.
  • Scaling monolithic applications such as the one described in the example can only be accomplished by deploying the same EAR/WAR packages in additional servers, known as horizontal scaling. Each copy of the application in additIonal servers will utilize the same amount of underlying resources, which is inefficient in its design.
  • Monolithic architecture impacts both the development and application deployment stage. As applications increase in size, it’s even more important that developers be able to break their applications down into smaller components. Because everything in the monolithic approach is tied together, developers cannot work independently to develop or deploy their own modules and must remain totally dependent on others, increasing overall development time.

With these thoughts in mind, let’s explore the value of microservices and how they can be used to provide the flexibility that’s lacking in monolithic architectures.

The theory behind microservices

One of the major driving forces behind any kind of architectural solution is scalability. Many of our peers in the software architecture and development world have gravitated towards a book called The Art of Scalability. The book’s defining model was the Scale Cube, which describes three dimensions of scaling:

Three Dimensions of Scaling an App

As you can see, the X-axis represents horizontal application scaling (which we have seen is possible even with monolithic architecture), and the Z-axis represents scaling the application by splitting similar things. The Z-axis idea can be better understood by using the sharding concept, where data is partitioned and the application redirects requests to corresponding shards based on user input (as is commonly done with databases).

The Y-axis represents functional decomposition. In this approach, various functions can be seen as independent services. Instead of deploying the entire application once all the components are available, developers can deploy their respective services independently. This not only improves developer time management but also offers greater flexibility to change and redeploy their modules without worrying about the rest of the application’s components. You can see how this is different from the earlier diagram which showed a monolithic design:

Microservices - Functional Decomposition

Advantages of microservices

The advantages of microservices seem strong enough to have convinced some big enterprise players such as Amazon, Netflix, and eBay to adopt the methodology. Compared to more monolithic design structures, microservices offer:

  • Improved fault isolation: Larger applications can remain mostly unaffected by the failure of a single module.
  • Eliminate vendor or technology lock-in: Microservices provide the flexibility to try out a new technology stack on an individual service as needed. There won’t be as many dependency concerns and rolling back changes becomes much easier. With less code in play, there is more flexibility.
  • Ease of understanding: With added simplicity, developers can better understand the functionality of a service.
  • Smaller and faster deployments: Smaller codebases and scope = quicker deployments, which also allow you to start to explore the benefits of Continuous Deployment.
  • Scalability: Since your services are separate, you can more easily scale the most needed ones at the appropriate times, as opposed to the whole application. When done correctly, this can impact cost savings.

Disadvantages of microservices

Microservices may be a hot trend, but the architecture does have drawbacks. In general, the main negative of microservices is the complexity that any distributed system has.

Here’s a list of some potential pain areas and other cons associated with microservices designs:

  • Communication between services is complex: Since everything is now an independent service, you have to carefully handle requests traveling between your modules. In one such scenario, developers may be forced to write extra code to avoid disruption. Over time, complications will arise when remote calls experience latency.
  • More services equals more resources: Multiple databases and transaction management can be painful.
  • Global testing is difficult: Testing a microservices-based application can be cumbersome. In a monolithic approach, we would just need to launch our WAR on an application server and ensure its connectivity with the underlying database. With microservices, each dependent service needs to be confirmed before testing can occur.
  • Debugging problems can be harder: Each service has its own set of logs to go through. Log, logs, and more logs.
  • Deployment challengers: The product may need coordination among multiple services, which may not be as straightforward as deploying a WAR in a container.
  • Large vs small product companies: Microservices are great for large companies, but can be slower to implement and too complicated for small companies who need to create and iterate quickly, and don’t want to get bogged down in complex orchestration.

Of course, with the right kind of automation and tools and the properly trained staff, all the above drawbacks can be addressed.

Deployment of microservices

Now that we understand microservices, how are they deployed?

The best way to deploy microservices-based applications is within containers, which are complete virtual operating system environments that provide processes with isolation and dedicated access to underlying hardware resources. One of the biggest names in container solutions right now is Docker, which you can learn more about in our Getting Started Course.

Virtual machines from infrastructure providers like Amazon Web Services (AWS) can also work well for microservices deployments, but relatively lightweight microservices packages may not leverage the whole virtual machine, potentially reducing their cost-effectiveness.

Code deployments can also be completed using an Open Service Gateway Initiative (OSGI) bundle. In this use case, all application services will be running under one Java virtual machine, but this method comes with a management and isolation tradeoff.

How to move forward with microservices

As application development trends continue to evolve, the debate between using microservices or leveraging traditional monolithic architectures will only become more pronounced. In the end, developers must do their due diligence and understand what works for their specific use cases.

For smaller companies, starting with a monolithic application can be simpler, faster, and cheaper — and if the product hasn’t gotten too mature, it can still be migrated to microservices at an appropriate time. The huge companies with millions of users are obvious examples of the best use case for microservices, as they need to ensure the uptime, scalability that the added modularity can provide.

A quick video review of the advantage of microservices

Check out our video below where Cloud Academy DevOps lead Jeremy Cook compares monolithic vs microservice architectures. And you can get further info straight from the source: our course on .Net Microservices – Refactors and Design.

Resources to get started with microservices

If you’re looking to use microservices, get started today with these resources on Cloud Academy:

Joe Nemer

Written by

Joe Nemer

Joe is a Technical Researcher at Cloud Academy and works to help readers connect concepts in ways they haven't thought of before. Side interests include all sorts of waves — ocean waves, sine waves, just not goodbye waves.


Related Posts

Alisha Reyes
Alisha Reyes
— January 6, 2020

New on Cloud Academy: Red Hat, Agile, OWASP Labs, Amazon SageMaker Lab, Linux Command Line Lab, SQL, Git Labs, Scrum Master, Azure Architects Lab, and Much More

Happy New Year! We hope you're ready to kick your training in overdrive in 2020 because we have a ton of new content for you. Not only do we have a bunch of new courses, hands-on labs, and lab challenges on AWS, Azure, and Google Cloud, but we also have three new courses on Red Hat, th...

Read more
  • agile
  • AWS
  • Azure
  • Google Cloud Platform
  • Linux
  • OWASP
  • programming
  • red hat
  • scrum
Alisha Reyes
Alisha Reyes
— December 24, 2019

Cloud Academy’s Blog Digest: Azure Best Practices, 6 Reasons You Should Get AWS Certified, Google Cloud Certification Prep, and more

Happy Holidays from Cloud Academy We hope you have a wonderful holiday season filled with family, friends, and plenty of food. Here at Cloud Academy, we are thankful for our amazing customer like you.  Since this time of year can be stressful, we’re sharing a few of our latest article...

Read more
  • AWS
  • azure best practices
  • blog digest
  • Cloud Academy
  • Google Cloud
Avatar
Guy Hummel
— December 12, 2019

Google Cloud Platform Certification: Preparation and Prerequisites

Google Cloud Platform (GCP) has evolved from being a niche player to a serious competitor to Amazon Web Services and Microsoft Azure. In 2019, research firm Gartner placed Google in the Leaders quadrant in its Magic Quadrant for Cloud Infrastructure as a Service for the second consecuti...

Read more
  • AWS
  • Azure
  • Google Cloud Platform
Alisha Reyes
Alisha Reyes
— December 10, 2019

New Lab Challenges: Push Your Skills to the Next Level

Build hands-on experience using real accounts on AWS, Azure, Google Cloud Platform, and more Meaningful cloud skills require more than book knowledge. Hands-on experience is required to translate knowledge into real-world results. We see this time and time again in studies about how pe...

Read more
  • AWS
  • Azure
  • Google Cloud
  • hands-on
  • labs
Alisha Reyes
Alisha Reyes
— December 5, 2019

New on Cloud Academy: AWS Solution Architect Lab Challenge, Azure Hands-on Labs, Foundation Certificate in Cyber Security, and Much More

Now that Thanksgiving is over and the craziness of Black Friday has died down, it's now time for the busiest season of the year. Whether you're a last-minute shopper or you already have your shopping done, the holidays bring so much more excitement than any other time of year. Since our...

Read more
  • AWS
  • AWS solution architect
  • AZ-203
  • Azure
  • cyber security
  • FCCS
  • Foundation Certificate in Cyber Security
  • Google Cloud Platform
  • Kubernetes
Avatar
Cloud Academy Team
— December 4, 2019

Understanding Enterprise Cloud Migration

What is enterprise cloud migration? Cloud migration is about moving your data, applications, and even infrastructure from your on-premises computers or infrastructure to a virtual pool of on-demand, shared resources that offer compute, storage, and network services at scale. Why d...

Read more
  • AWS
  • Azure
  • Data Migration
Wendy Dessler
Wendy Dessler
— November 27, 2019

6 Reasons Why You Should Get an AWS Certification This Year

In the past decade, the rise of cloud computing has been undeniable. Businesses of all sizes are moving their infrastructure and applications to the cloud. This is partly because the cloud allows businesses and their employees to access important information from just about anywhere. ...

Read more
  • AWS
  • Certifications
  • certified
Avatar
Andrea Colangelo
— November 26, 2019

AWS Regions and Availability Zones: The Simplest Explanation You Will Ever Find Around

The basics of AWS Regions and Availability Zones We’re going to treat this article as a sort of AWS 101 — it’ll be a quick primer on AWS Regions and Availability Zones that will be useful for understanding the basics of how AWS infrastructure is organized. We’ll define each section,...

Read more
  • AWS
Avatar
Dzenan Dzevlan
— November 20, 2019

Application Load Balancer vs. Classic Load Balancer

What is an Elastic Load Balancer? This post covers basics of what an Elastic Load Balancer is, and two of its examples: Application Load Balancers and Classic Load Balancers. For additional information — including a comparison that explains Network Load Balancers — check out our post o...

Read more
  • ALB
  • Application Load Balancer
  • AWS
  • Elastic Load Balancer
  • ELB
Nisar Ahmad
Nisar Ahmad
— November 12, 2019

Kubernetes Services: AWS vs. Azure vs. Google Cloud

Kubernetes is a popular open-source container orchestration platform that allows us to deploy and manage multi-container applications at scale. Businesses are rapidly adopting this revolutionary technology to modernize their applications. Cloud service providers — such as Amazon Web Ser...

Read more
  • AWS
  • Azure
  • Google Cloud
  • Kubernetes
Avatar
Stuart Scott
— October 31, 2019

AWS Internet of Things (IoT): The 3 Services You Need to Know

The Internet of Things (IoT) embeds technology into any physical thing to enable never-before-seen levels of connectivity. IoT is revolutionizing industries and creating many new market opportunities. Cloud services play an important role in enabling deployment of IoT solutions that min...

Read more
  • AWS
  • AWS IoT Events
  • AWS IoT SiteWise
  • AWS IoT Things Graph
  • IoT
Avatar
Cloud Academy Team
— October 23, 2019

Which Certifications Should I Get?

As we mentioned in an earlier post, the old AWS slogan, “Cloud is the new normal” is indeed a reality today. Really, cloud has been the new normal for a while now and getting credentials has become an increasingly effective way to quickly showcase your abilities to recruiters and compan...

Read more
  • AWS
  • Azure
  • Certifications
  • Cloud Computing
  • Google Cloud Platform