Skip to main content

Microservices Architecture: Advantages and Drawbacks

Microservices are a way of breaking large software projects into loosely coupled modules, which communicate with each other through simple Application Programming Interfaces (APIs).

Microservices have become increasingly popular over the past few years. The modular architectural style, based on the philosophy of breaking large software projects into smaller, independent, and loosely coupled modules, has gained prominence among developers for its dynamic and agile qualities in API management and execution of highly defined and discrete tasks.

Simply stated, microservices are really nothing more than another architectural solution for designing complex – mostly web-based – applications. Microservices have gained prominence as an evolution from SOA (Service Oriented Architecture), an approach that was designed to overcome the disadvantages of traditional monolithic architectures. In this blog post, we’ll explore the evolution of development from monolithic architectures towards microservices and its underlying justifications.

The Evolution from Monolithic Architecture

Let’s start with a simple example.

Suppose I need to build a classic web application using Java. The first thing I will do is design a Presentation Layer (the user interface), followed by an Application Layer, which handles all of the business logic. This is followed by an Integration Layer to enable loose coupling between various components of the Application Layer. Finally, I will design a Database Layer that will be accessible to the underlying persistence system.

To run the entire application, I will create either a WAR or EAR package and deploy it on an application server (like JBoss, Tomcat, or WebLogic). Because I have packaged everything as an EAR/WAR, my application becomes monolithic in nature, which means that even though we have separate and distinguishable components, all are packaged together.

Here’s an illustration:

Monolithic Application Diagram

You may already be familiar with the characteristics of monolithic applications depending on your development experience. However, this example also stands to illustrate some of the challenges developers and architects face with this kind of design.

Here are the flaws:

  • As the application grows, so does the associated code base, which can overload your development environment each time it loads the application, reducing developer productivity.
  • Because the application has been packaged in one EAR/WAR, changing the technology stack of the application becomes a difficult task. With this kind of architecture, refactoring the code base becomes difficult because it’s hard to predict how it will impact application functionality.
  • If any single application function or component fails, then the entire application goes down. Imagine a web application with separate functions including payment, login, and history. If a particular function starts consuming more processing power, the entire application’s performance will be compromised.
  • Scaling monolithic applications such as the one described in the example can only be accomplished by deploying the same EAR/WAR packages in additional servers, known as horizontal scaling. Each copy of the application in additIonal servers will utilize the same amount of underlying resources, which is inefficient in its design.
  • Monolithic architecture impacts both the development and application deployment stage. As applications increase in size, it’s even more important that developers be able to break their applications down into smaller components. Because everything in the monolithic approach is tied together, developers cannot work independently to develop or deploy their own modules and must remain totally dependent on others, increasing overall development time.

With these thoughts in mind, let’s explore the value of microservices and how they can be used to provide the flexibility that’s lacking in monolithic architectures..

Exploring Microservices

One of the major driving forces behind any kind of architectural solution is scalability. While I was first exploring microservices, I observed that peers seemed to gravitate towards a book called The Art of Scalability. The book’s defining model was the Scale Cube, which describes three dimensions of scaling:

Three Dimensions of Scaling an App

As you can see, the X-axis represents horizontal application scaling (which we have seen is possible even with monolithic architecture), and the Z-axis represents scaling the application by splitting similar things. The Z-axis idea can be better understood by using the sharding concept, where data is partitioned and the application redirects requests to corresponding shards based on user input.

The Y-axis represents functional decomposition. In this approach, various functions can be seen as independent services. Instead of deploying the entire application once all the components are available, developers can deploy their respective services independently. This not only improves developer time management but also offers greater flexibility to change and redeploy their modules without worrying about the rest of the application’s components. You can see how this is different from the earlier diagram which showed a monolithic design:

Microservices - Functional Decomposition

The Advantages of Microservices

The advantages of microservices seem strong enough to have convinced some big enterprise players such as Amazon, Netflix, and eBay to adopt the methodology. Compared to more monolithic design structures, microservices:

  • Improve fault isolation: Larger applications can remain mostly unaffected by the failure of a single module.
  • Eliminate vendor or technology lock-in: Microservices provide the flexibility to try out a new technology stack on an individual service as needed. There won’t be as many dependency concerns and rolling back changes becomes much easier. With less code in play, there is more flexibility.
  • Ease of Understanding: With added simplicity, developers can better understand the functionality of a service.

Deployment of Microservices

Now that we understand microservices, how are they deployed?

The best way to deploy microservices-based applications is within containers, which are complete virtual operating system environments that provide processes with isolation and dedicated access to underlying hardware resources. One of the biggest names in container solutions right now is Docker, which you can learn more about in our Getting Started course.

Virtual machines from infrastructure providers like Amazon Web Services (AWS) can also work well for microservices deployments, but relatively lightweight microservices packages may not leverage the whole virtual machine, potentially reducing their cost effectiveness.

Code deployments can also be completed using an Open Service Gateway Initiative (OSGI) bundle. In this use case, all application services will be running under one Java virtual machine, but this method comes with a management and isolation tradeoff.

The Disadvantages of Microservices

Microservices may be a hot trend, but it does not come without its drawbacks.

Here’s a list of some potential pain areas associated with microservices designs:

  • Developing distributed systems can be complex. Since everything is now an independent service, you have to carefully handle requests traveling between your modules. In one such scenario, developers may be forced to write extra code to avoid disruption. Over time, complications will arise when remote calls experience latency.
  • Multiple databases and transaction management can be painful.
  • Testing a microservices-based application can be cumbersome. In a monolithic approach, we would just need to launch our WAR on an application server and ensure its connectivity with the underlying database. With microservices, each dependent service needs to be confirmed before testing can occur.
  • Deploying microservices can be complex. They may need coordination among multiple services, which may not be as straightforward as deploying a WAR in a container.

Of course, with the right kind of automation and tools, all the above drawbacks can be addressed.

Closing Thoughts

As application development trends continue to evolve, the debate between using microservices or leveraging traditional monolithic architectures will only become more pronounced. In the end, developers must do their due diligence and understand what works for their specific use cases.

If you’re looking to use microservices, get started today with these resources on Cloud Academy:

Written by

Guy Hummel

Guy launched his first training website in 1995 and he's been helping people learn IT technologies ever since. He has been a sysadmin, instructor, sales engineer, IT manager, and entrepreneur. Guy’s passion is making complex technology easy to understand.

Related Posts

— November 28, 2018

Two New EC2 Instance Types Announced at AWS re:Invent 2018 – Monday Night Live

The announcements at re:Invent just keep on coming! Let’s look at what benefits these two new EC2 instance types offer and how these two new instances could be of benefit to you. If you're not too familiar with Amazon EC2, you might want to familiarize yourself by creating your first Am...

Read more
  • AWS
  • EC2
  • re:Invent 2018
— November 21, 2018

Google Cloud Certification: Preparation and Prerequisites

Google Cloud Platform (GCP) has evolved from being a niche player to a serious competitor to Amazon Web Services and Microsoft Azure. In 2018, research firm Gartner placed Google in the Leaders quadrant in its Magic Quadrant for Cloud Infrastructure as a Service for the first time. In t...

Read more
  • AWS
  • Azure
  • Google Cloud
Khash Nakhostin
— November 13, 2018

Understanding AWS VPC Egress Filtering Methods

In order to understand AWS VPC egress filtering methods, you first need to understand that security on AWS is governed by a shared responsibility model where both vendor and subscriber have various operational responsibilities. AWS assumes responsibility for the underlying infrastructur...

Read more
  • Aviatrix
  • AWS
  • VPC
— November 10, 2018

S3 FTP: Build a Reliable and Inexpensive FTP Server Using Amazon’s S3

Is it possible to create an S3 FTP file backup/transfer solution, minimizing associated file storage and capacity planning administration headache?FTP (File Transfer Protocol) is a fast and convenient way to transfer large files over the Internet. You might, at some point, have conf...

Read more
  • Amazon S3
  • AWS
— October 2, 2018

What Are Best Practices for Tagging AWS Resources?

There are many use cases for tags, but what are the best practices for tagging AWS resources? In order for your organization to effectively manage resources (and your monthly AWS bill), you need to implement and adopt a thoughtful tagging strategy that makes sense for your business. The...

Read more
  • AWS
  • cost optimization
— September 26, 2018

How to Optimize Amazon S3 Performance

Amazon S3 is the most common storage options for many organizations, being object storage it is used for a wide variety of data types, from the smallest objects to huge datasets. All in all, Amazon S3 is a great service to store a wide scope of data types in a highly available and resil...

Read more
  • Amazon S3
  • AWS
— September 18, 2018

How to Optimize Cloud Costs with Spot Instances: New on Cloud Academy

One of the main promises of cloud computing is access to nearly endless capacity. However, it doesn’t come cheap. With the introduction of Spot Instances for Amazon Web Services’ Elastic Compute Cloud (AWS EC2) in 2009, spot instances have been a way for major cloud providers to sell sp...

Read more
  • AWS
  • Azure
  • Google Cloud
  • SpotInst
— August 23, 2018

What are the Benefits of Machine Learning in the Cloud?

A Comparison of Machine Learning Services on AWS, Azure, and Google CloudArtificial intelligence and machine learning are steadily making their way into enterprise applications in areas such as customer support, fraud detection, and business intelligence. There is every reason to beli...

Read more
  • AWS
  • Azure
  • Google Cloud
  • Machine Learning
— August 17, 2018

How to Use AWS CLI

The AWS Command Line Interface (CLI) is for managing your AWS services from a terminal session on your own client, allowing you to control and configure multiple AWS services.So you’ve been using AWS for awhile and finally feel comfortable clicking your way through all the services....

Read more
  • AWS
Albert Qian
— August 9, 2018

AWS Summit Chicago: New AWS Features Announced

Thousands of cloud practitioners descended on Chicago’s McCormick Place West last week to hear the latest updates around Amazon Web Services (AWS). While a typical hot and humid summer made its presence known outside, attendees inside basked in the comfort of air conditioning to hone th...

Read more
  • AWS
  • AWS Summits
— August 8, 2018

From Monolith to Serverless – The Evolving Cloudscape of Compute

Containers can help fragment monoliths into logical, easier to use workloads. The AWS Summit New York was held on July 17 and Cloud Academy sponsored my trip to the event. As someone who covers enterprise cloud technologies and services, the recent Amazon Web Services event was an insig...

Read more
  • AWS
  • AWS Summits
  • Containers
  • DevOps
  • serverless
— July 11, 2018

AWS Certification Practice Exam: What to Expect from Test Questions

If you’re building applications on the AWS cloud or looking to get started in cloud computing, certification is a way to build deep knowledge in key services unique to the AWS platform. AWS currently offers nine certifications that cover the major cloud roles including Solutions Archite...

Read more
  • AWS