Skip to main content

Big Data on AWS: How the Cloud Can Help You

(Update) We’ve recently uploaded new training material on Big Data using services on Amazon Web Services, Microsoft Azure, and Google Cloud Platform on the Cloud Academy Training Library. On top of that, we’ve been busy adding new content on the Cloud Academy blog on how to best train yourself and your team on Big Data.


Big Data is a term used to describe data that is too large and complex to be processed by traditional data processing techniques, instead, it requires massively parallel software running on a big number of servers, which could be in the range of hundreds or even thousands. The size of the data that can be considered “Big” is relative. What is considered Big Data today, might not be considered “Big” few years ahead: 1 GB of data was considered Big Data years ago; 1 TB (more than a thousand time bigger) is not considered to be “Big” nowadays.

According to the widely used Gartner’s definition, Big Data is mainly characterized by the 3 V’s: Volume (amount of data), Velocity (speed of data in and out), and Variety (range of data types and sources). In 2012, Gartner updated its definition for Big Data as follows: “Big data is high volume, high velocity, and/or high variety information assets that require new forms of processing to enable enhanced decision making, insight discovery, and process optimization.
Room with several computers

Big Data on AWS

Big Data processing requires huge investments in hardware and processing resources, and that creates an obstacle for small to medium-sized businesses. Cloud computing with public clouds can overcome this obstacle by providing pay-as-you-go, on-demand, and scalable cloud services for Big Data handling. Using cloud computing for Big Data will reduce the cost of hardware, reduce the cost of processing, and facilitate testing the value of Big Data before deploying expensive resources.

Amazon Web Services is the largest public cloud and is described by Gartner to be leading other public clouds by years. It provides a comprehensive set of services that enable customers to rely completely on AWS to handle their Big Data. In addition to database services, AWS makes it easy to provision computation (EC2), storage (S3), data transfer (AWS Direct Connect and Import/Export services), and archiving (Glacier) services to facilitate turning data into information useful for business.  In the rest of this article, we will shed light on AWS data services that are used to handle Big Data.

Amazon EMR

EMR is basically an Amazon-enhanced Hadoop to work seamlessly on AWS. Hadoop is an open-source software framework for distributed storage and distributed processing of Big Data on clusters of commodity hardware (in EMR it would be AWS virtual servers). Hadoop Distributed File System (HDFS) splits files into large blocks and distributes the blocks amongst the nodes in the cluster. Hadoop Map/Reduce processes the data by moving code to the nodes that have the required data, and the data will be processed in parallel on the nodes.

Hadoop clusters running on Amazon EMR use Amazon S3 for bulk storage of input and output data, and CloudWatch to monitor cluster performance and raise alarms. You can also move data into and out of DynamoDB using Amazon EMR and Hive. All of this is orchestrated by Amazon EMR control software that launches and manages the Hadoop cluster. This process is called an Amazon EMR cluster. EMR has the advantage of using the Cloud over the traditional Hadoop. Users can provision scalable clusters of virtual servers within minutes and pay for the actual use only.

EMR can also integrate and benefit from the other AWS services. Open-source projects that run on top of the Hadoop architecture can also be run on Amazon EMR.

Amazon Redshift

Amazon Redshift is Amazon’s Columnar Data Store, that is data stores arranged in columns instead of rows, enabling faster access for analytic applications. It’s a fully managed petabyte-scale data warehouse service. RedShift is designed for analytic workloads and connects to standard SQL-based clients and business intelligence tools.

According to Amazon’s website, Redshift delivers fast query and I/O performance for virtually any size dataset by using columnar storage technology and parallelizing and distributing queries across multiple nodes. Most common administrative tasks associated with provisioning, configuring, monitoring, backing up, and securing a data warehouse are automated.

DynamoDB

Amazon DynamoDB is a fully managed fast and flexible NoSQL database service for all applications that need consistent, single-digit millisecond latency at any scale. It has high availability and reliability with seamless scaling. In DynamoDB service is purchased based on throughput rather than storage. When more throughput is requested, DynamoDB will spread the data and traffic over a number of servers using solid-state drives to allow predictable performance.

DynamoDB supports both document and key-value data models and is schema-less, that is each item (row) has a primary key and any number of attributes (columns), and the primary key is the only required attribute that is needed to identify the item. In addition to query, the primary key, DynamoDB has added flexibility by querying non-primary key attributes using Global Secondary Indexes and Local Secondary Indexes. Its flexible data model and reliable performance make it a great fit for mobile, web, gaming, ad-tech, IoT, and many other applications.

Big Data is not necessarily NoSQL, Relational DB are Big too

Although the term Big Data is mainly associated with NoSQL DBs, Relational DBs can come under the definition of Big Data too. According to Amazon’s website Amazon RDS allows you to easily set up, operate, and scale a relational database in the cloud. It provides cost-efficient and resizable capacity while managing time-consuming database administration tasks, freeing you up to focus on your applications and business.

Amazon Kinesis

AWS has introduced a real-time event processing service called Amazon Kinesis. Amazon describes Kinesis as a fully managed streaming data service in which continuously various types of data such as clickstreams, application logs, and social media can be put into an Amazon Kinesis stream from hundreds of thousands of sources. Within seconds, the data will be available for an Amazon Kinesis Application to read and process from the stream. Amazon Kinesis stream consists of Shards receiving data for the producer application. Shard is the basic unit of Kinesis streams which can support 1 MB of data written per second, and 2 MB of data read per second. The consumer applications take the data from the Kinesis stream and do whatever processing required.

By looking at the services provided by Amazon to handle Big Data, AWS has a complete set that covers all needs for Big Data processing, storage, and transfer. AWS covers the full spectrum of Big Data technologies: Hadoop and Map Reduce (EMR), Relational DBs (RDS), NoSQL DBs (DynamoDB), Columnar Data Stores (RedShift), and Stream Processing (Kinesis). In addition to that, Amazon facilitated connecting these services with each other, and with other services on AWS, and that creates unrivaled flexibility and capabilities for Big Data.

Avatar

Written by

Motasem Aldiab

Motasem Aldiab is a professor, consultant, trainer, and developer. Dr. Aldiab has got his PhD in Computer Engineering from QUB in 2008. He is a certified trainer for the Cloud School and SOA School. He has been training and offering consultations for years in Java, SOA, and Cloud Computing, and leading workshops and training session (virtual or instructor led).

Related Posts

Avatar
John Chell
— June 13, 2019

AWS Certified Solutions Architect Associate: A Study Guide

The AWS Solutions Architect - Associate Certification (or Sol Arch Associate for short) offers some clear benefits: Increases marketability to employers Provides solid credentials in a growing industry (with projected growth of as much as 70 percent in five years) Market anal...

Read more
  • AWS
  • AWS Certifications
Chris Gambino and Joe Niemiec
Chris Gambino and Joe Niemiec
— June 11, 2019

Moving Data to S3 with Apache NiFi

Moving data to the cloud is one of the cornerstones of any cloud migration. Apache NiFi is an open source tool that enables you to easily move and process data using a graphical user interface (GUI).  In this blog post, we will examine a simple way to move data to the cloud using NiFi c...

Read more
  • AWS
  • S3
Avatar
Chandan Patra
— June 11, 2019

Amazon DynamoDB: 10 Things You Should Know

Amazon DynamoDB is a managed NoSQL service with strong consistency and predictable performance that shields users from the complexities of manual setup.Whether or not you've actually used a NoSQL data store yourself, it's probably a good idea to make sure you fully understand the key ...

Read more
  • AWS
  • DynamoDB
Avatar
Andrew Larkin
— June 6, 2019

The 11 AWS Certifications: Which is Right for You and Your Team?

As companies increasingly shift workloads to the public cloud, cloud computing has moved from a nice-to-have to a core competency in the enterprise. This shift requires a new set of skills to design, deploy, and manage applications in cloud computing.As the market leader and most ma...

Read more
  • AWS
  • AWS Certifications
Sam Ghardashem
Sam Ghardashem
— May 15, 2019

Aviatrix Integration of a NextGen Firewall in AWS Transit Gateway

Learn how Aviatrix’s intelligent orchestration and control eliminates unwanted tradeoffs encountered when deploying Palo Alto Networks VM-Series Firewalls with AWS Transit Gateway.Deploying any next generation firewall in a public cloud environment is challenging, not because of the f...

Read more
  • AWS
Joe Nemer
Joe Nemer
— May 3, 2019

AWS Config Best Practices for Compliance

Use AWS Config the Right Way for Successful ComplianceIt’s well-known that AWS Config is a powerful service for monitoring all changes across your resources. As AWS Config has constantly evolved and improved over the years, it has transformed into a true powerhouse for monitoring your...

Read more
  • AWS
  • Compliance
Avatar
Francesca Vigliani
— April 30, 2019

Cloud Academy is Coming to the AWS Summits in Atlanta, London, and Chicago

Cloud Academy is a proud sponsor of the 2019 AWS Summits in Atlanta, London, and Chicago. We hope you plan to attend these free events that bring the cloud computing community together to connect, collaborate, and learn about AWS. These events are all about learning. You can learn how t...

Read more
  • AWS
  • AWS Summits
Paul Hortop
Paul Hortop
— April 2, 2019

How to Monitor Your AWS Infrastructure

The AWS cloud platform has made it easier than ever to be flexible, efficient, and cost-effective. However, monitoring your AWS infrastructure is the key to getting all of these benefits. Realizing these benefits requires that you follow AWS best practices which constantly change as AWS...

Read more
  • AWS
  • Monitoring
Joe Nemer
Joe Nemer
— April 1, 2019

AWS EC2 Instance Types Explained

Amazon Web Services’ resource offerings are constantly changing, and staying on top of their evolution can be a challenge. Elastic Cloud Compute (EC2) instances are one of their core resource offerings, and they form the backbone of most cloud deployments. EC2 instances provide you with...

Read more
  • AWS
  • EC2
Avatar
Nitheesh Poojary
— March 26, 2019

How DNS Works – the Domain Name System (Part One)

Before migrating domains to Amazon's Route53, we should first make sure we properly understand how DNS worksWhile we'll get to AWS's Route53 Domain Name System (DNS) service in the second part of this series, I thought it would be helpful to first make sure that we properly understand...

Read more
  • AWS
Avatar
Stuart Scott
— March 14, 2019

Multiple AWS Account Management using AWS Organizations

As businesses expand their footprint on AWS and utilize more services to build and deploy their applications, it becomes apparent that multiple AWS accounts are required to manage the environment and infrastructure.  A multi-account strategy is beneficial for a number of reasons as ...

Read more
  • AWS
  • Identity Access Management
Avatar
Sanket Dangi
— February 11, 2019

WaitCondition Controls the Pace of AWS CloudFormation Templates

AWS's WaitCondition can be used with CloudFormation templates to ensure required resources are running.As you may already be aware, AWS CloudFormation is used for infrastructure automation by allowing you to write JSON templates to automatically install, configure, and bootstrap your ...

Read more
  • AWS
  • CloudFormation