Introduction to Apache Spark and Zeppelin on Google Cloud Dataproc

Want to learn more about using Apache Spark and Zeppelin on Dataproc via the Google Cloud Platform? You’ve come to the right place.

Cloud Dataproc is Google’s answer to Amazon EMR (Elastic MapReduce). Like EMR, Cloud Dataproc provisions and manage Compute Engine-based Apache Hadoop and Spark data processing clusters.
If you are not familiar with Amazon EMR, check out my two-part series about using Apache Spark and Zeppelin on EMR – See Part 1 and Part 2. You may find my notes on IAM helpful, too.

First Impressions: The Key Differences between EMR and Cloud Dataproc

Cloud Dataproc is fairly new. It was first released in beta last September, and is now generally available since February this year. If you have previously used EMR, you may find Cloud Dataproc familiar.
An important difference I have observed is this: In EMR, when you create a cluster, you know exactly what you are installing because you are presented with an option to choose from a list of supported Hadoop components. Cloud Dataproc, on the other hand, will just install all the supported components by default.
EMR is a more mature platform. After all, it has been around since 2009. It has support for many applications, including Tez, Ganglia, Presto, HBase, Pig, Hive, Mahout, Sqoop, and Zeppelin. As for Cloud Dataproc, it only supports Hadoop, Spark, Hive, and Pig (see the supported Cloud Dataproc versions page). Fortunately, you can specify initialization actions when creating a Cloud Dataproc cluster so that you can install the additional software you need.

Installing Zeppelin on Cloud Dataproc

We will go through the steps to do exactly that when we set up Zeppelin with Spark on Cloud Dataproc. Why Zeppelin? It’s an innovative web-based notebook that enables interactive data analytics.
With Zeppelin, you can create data-driven documents based on a variety of different backends, including Hadoop. It’s a great starting project, so let’s jump right into it.

Our Assumptions

Creating a Cloud Dataproc Cluster

Google provided a collection of initialization actions that we can use to install additional (but unsupported) Hadoop components when we create a cluster. For this example, we will use the Zeppelin initialization action.
To use an initialization action, we need to access the initialization action script in a Cloud Storage bucket.
We will not use the publicly-accessible gs://dataproc-initialization-actions Cloud Storage bucket as instructed in the README. At the time of writing, the version of the Zeppelin initialization action script is outdated. If we were to create a cluster with it, we would encounter errors. Let’s upload the script to our own Cloud Storage bucket instead.

$ git clone https://github.com/GoogleCloudPlatform/dataproc-initialization-actions.git
Cloning into 'dataproc-initialization-actions'...
remote: Counting objects: 267, done.
remote: Total 267 (delta 0), reused 0 (delta 0), pack-reused 266
Receiving objects: 100% (267/267), 89.24 KiB | 63.00 KiB/s, done.
Resolving deltas: 100% (88/88), done.
Checking connectivity... done.
$ cd dataproc-initialization-actions/apache-zeppelin/
$ gsutil mb gs://cloudacademy/
Creating gs://cloudacademy/...
$ gsutil cp zeppelin.sh gs://cloudacademy/
Copying file://zeppelin.sh [Content-Type=application/x-sh]...
Uploading   gs://cloudacademy/zeppelin.sh:                       4.47 KiB/4.47 KiB

Next, we will issue the gcloud command to set up a Cloud Dataproc cluster.

$ gcloud dataproc clusters create spark-zeppelin \
> --initialization-actions gs://cloudacademy/zeppelin.sh \
> --initialization-action-timeout 15m
Waiting on operation [projects/operating-spot-133003/regions/global/operations/cdf1fadd-032d-4261-9520-c2f55f8c46fa].
Waiting for cluster creation operation...done.
Created [https://dataproc.googleapis.com/v1/projects/operating-spot-133003/regions/global/clusters/spark-zeppelin].
clusterName: spark-zeppelin
clusterUuid: f05a9f22-5ee6-48c8-83d3-7079e2d1d834
config:
  configBucket: dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia
  gceClusterConfig:
    networkUri: https://www.googleapis.com/compute/v1/projects/operating-spot-133003/global/networks/default
    serviceAccountScopes:
    - https://www.googleapis.com/auth/bigquery
    - https://www.googleapis.com/auth/bigtable.admin.table
    - https://www.googleapis.com/auth/bigtable.data
    - https://www.googleapis.com/auth/cloud.useraccounts.readonly
    - https://www.googleapis.com/auth/devstorage.full_control
    - https://www.googleapis.com/auth/devstorage.read_write
    - https://www.googleapis.com/auth/logging.write
    zoneUri: https://www.googleapis.com/compute/v1/projects/operating-spot-133003/zones/asia-east1-a
  initializationActions:
  - executableFile: gs://cloudacademy/zeppelin.sh
    executionTimeout: 900.000s
  masterConfig:
    diskConfig:
      bootDiskSizeGb: 500
    imageUri: https://www.googleapis.com/compute/v1/projects/cloud-dataproc/global/images/dataproc-1-0-20160516-190717
    instanceNames:
    - spark-zeppelin-m
    machineTypeUri: https://www.googleapis.com/compute/v1/projects/operating-spot-133003/zones/asia-east1-a/machineTypes/n1-standard-4
    numInstances: 1
  softwareConfig:
    imageVersion: '1.0'
    properties:
      distcp:mapreduce.map.java.opts: -Xmx2457m
      distcp:mapreduce.map.memory.mb: '3072'
      distcp:mapreduce.reduce.java.opts: -Xmx4915m
      distcp:mapreduce.reduce.memory.mb: '6144'
      mapred:mapreduce.map.cpu.vcores: '1'
      mapred:mapreduce.map.java.opts: -Xmx2457m
      mapred:mapreduce.map.memory.mb: '3072'
      mapred:mapreduce.reduce.cpu.vcores: '2'
      mapred:mapreduce.reduce.java.opts: -Xmx4915m
      mapred:mapreduce.reduce.memory.mb: '6144'
      mapred:yarn.app.mapreduce.am.command-opts: -Xmx4915m
      mapred:yarn.app.mapreduce.am.resource.cpu-vcores: '2'
      mapred:yarn.app.mapreduce.am.resource.mb: '6144'
      spark:spark.driver.maxResultSize: 1920m
      spark:spark.driver.memory: 3840m
      spark:spark.executor.cores: '2'
      spark:spark.executor.memory: 5586m
      spark:spark.yarn.am.memory: 5586m
      spark:spark.yarn.am.memoryOverhead: '558'
      spark:spark.yarn.executor.memoryOverhead: '558'
      yarn:yarn.nodemanager.resource.memory-mb: '12288'
      yarn:yarn.scheduler.maximum-allocation-mb: '12288'
      yarn:yarn.scheduler.minimum-allocation-mb: '1024'
  workerConfig:
    diskConfig:
      bootDiskSizeGb: 500
    imageUri: https://www.googleapis.com/compute/v1/projects/cloud-dataproc/global/images/dataproc-1-0-20160516-190717
    instanceNames:
    - spark-zeppelin-w-0
    - spark-zeppelin-w-1
    machineTypeUri: https://www.googleapis.com/compute/v1/projects/operating-spot-133003/zones/asia-east1-a/machineTypes/n1-standard-4
    numInstances: 2
projectId: operating-spot-133003
status:
  state: RUNNING
  stateStartTime: '2016-06-07T09:35:33.783Z'
statusHistory:
- state: CREATING
  stateStartTime: '2016-06-07T09:32:56.398Z'

By default, Cloud Dataproc clusters use n1-standard-4 machine type for the master and worker nodes. These are the standard instances with 4 virtual CPUs and 15GB of memory. You can change the defaults by specifying the relevant flags. See the gcloud dataproc clusters create documentation.

$ gcloud compute instances list
NAME                ZONE          MACHINE_TYPE   PREEMPTIBLE  INTERNAL_IP  EXTERNAL_IP      STATUS
spark-zeppelin-m    asia-east1-a  n1-standard-4               10.140.0.2   104.199.169.41   RUNNING
spark-zeppelin-w-0  asia-east1-a  n1-standard-4               10.140.0.4   104.199.160.183  RUNNING
spark-zeppelin-w-1  asia-east1-a  n1-standard-4               10.140.0.3   130.211.248.2    RUNNING

SSH to the Master Node

Now we can connect to the master node remotely. Instead of running ssh directly, we can issue the gcloud compute ssh spark-zeppelin-m command.

$ gcloud compute ssh spark-zeppelin-m
WARNING: The private SSH key file for Google Compute Engine does not exist.
WARNING: You do not have an SSH key for Google Compute Engine.
WARNING: [/usr/bin/ssh-keygen] will be executed to generate a key.
This tool needs to create the directory [/Users/eugeneteo/.ssh] before being
able to generate SSH keys.
Do you want to continue (Y/n)?
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/eugeneteo/.ssh/google_compute_engine.
Your public key has been saved in /Users/eugeneteo/.ssh/google_compute_engine.pub.
The key fingerprint is:
SHA256:xTjbTqWIfroXr670RWQkscOPfGdY6rzpi14WCoFI5Ko eugeneteo@eugeneteos-MacBook-Pro.local
The key's randomart image is:
+---[RSA 2048]----+
| .o     o..      |
| o . . . *       |
|  o . . * = o    |
| .     + % *     |
|.     o S @ o    |
|.    . ..O +     |
|E     o ooB      |
|     . +.=.o     |
|      +**o=.     |
+----[SHA256]-----+
Updated [https://www.googleapis.com/compute/v1/projects/operating-spot-133003].
Warning: Permanently added 'compute.5792161037633137215' (ECDSA) to the list of known hosts.
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
eugeneteo@spark-zeppelin-m:~$

Spark’s Scala Shell

We will not cover the Spark programming model in this article, but we will learn just enough to start an interpreter on the command-line and to make sure it works. We will launch spark-shell on YARN.

$ spark-shell --master=yarn
16/06/07 09:53:32 INFO org.spark-project.jetty.server.Server: jetty-8.y.z-SNAPSHOT
16/06/07 09:53:32 INFO org.spark-project.jetty.server.AbstractConnector: Started SocketConnector@0.0.0.0:36325
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.6.1
      /_/
Using Scala version 2.10.5 (OpenJDK 64-Bit Server VM, Java 1.8.0_72-internal)
Type in expressions to have them evaluated.
Type :help for more information.
16/06/07 09:53:38 INFO akka.event.slf4j.Slf4jLogger: Slf4jLogger started
16/06/07 09:53:38 INFO Remoting: Starting remoting
16/06/07 09:53:38 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem@10.140.0.2:40692]
16/06/07 09:53:39 INFO org.spark-project.jetty.server.Server: jetty-8.y.z-SNAPSHOT
16/06/07 09:53:39 INFO org.spark-project.jetty.server.AbstractConnector: Started SelectChannelConnector@0.0.0.0:4040
16/06/07 09:53:39 INFO org.apache.hadoop.yarn.client.RMProxy: Connecting to ResourceManager at spark-zeppelin-m/10.140.0.2:8032
16/06/07 09:53:43 INFO org.apache.hadoop.yarn.client.api.impl.YarnClientImpl: Submitted application application_1465292021581_0001
[...]
scala> val data = sc.parallelize(1 to 100000)
data: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:27
scala> data.filter(_ < 100).collect()
res0: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99)

It worked!

Access the Zeppelin Notebook

Before we can access the Zeppelin Notebook, we will need to create a SSH tunnel to the master node.

$ gcloud compute ssh --ssh-flag="-D 31337" --ssh-flag="-N" --ssh-flag="-n" spark-zeppelin-m

Configure your web browser to use the SOCKS proxy localhost:31337.
Having done that, we can now access http://localhost:8080/.
zeppelin1
zeppelin2
Great! The notebook works, too!

Terminating the Cloud Dataproc Cluster

Always remember to terminate your cluster after you have completed your work to avoid spending more money than you have planned. We are billed by the minute, based on the size of our cluster and the duration we ran our jobs.

$ gcloud dataproc clusters delete spark-zeppelin
The cluster 'spark-zeppelin' and all attached disks will be deleted.
Do you want to continue (Y/n)?  y
Waiting on operation [projects/operating-spot-133003/regions/global/operations/e2b88d41-e215-480e-a970-e6b49c0de574].
Waiting for cluster deletion operation...done.
Deleted [https://dataproc.googleapis.com/v1/projects/operating-spot-133003/regions/global/clusters/spark-zeppelin].
$ gsutil -m rm -r gs://cloudacademy/ gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/
Removing gs://cloudacademy/zeppelin.sh#1465291266953000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/cluster.properties#1465291982908000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-m/dataproc-initialization-script-0_output#1465292128609000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-m/dataproc-startup-script_SUCCESS#1465292128628000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-m/dataproc-startup-script_output#1465292038813000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-w-0/dataproc-initialization-script-0_output#1465292016529000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-w-0/dataproc-startup-script_SUCCESS#1465292016563000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-w-0/dataproc-startup-script_output#1465292015001000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-w-1/dataproc-initialization-script-0_output#1465292016544000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-w-1/dataproc-startup-script_SUCCESS#1465292016575000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-w-1/dataproc-startup-script_output#1465292014612000...
Removing gs://cloudacademy/...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/...

What We’ve Learned

In this article, we have learned:

  1. How to set up a Cloud Dataproc cluster with Zeppelin.
  2. We have launched spark-shell on YARN.
  3. We have also set up a SSH tunnel to access the Zeppelin Notebook from the master node.

Related Courses

Data Management on Google Cloud Platform might be a place to start. It’s 26 minutes of data management goodness from David Clinton, an expert Linux Sysadmin.

For a guided instructional experience, check out a Cloud Academy Learning Path. We offer a free 7-day trial subscription with access all video courses, self-test quizzes, and labs. Our labs are a great tool for applying what you learned and testing your understanding in a live environment. Get started today!

Avatar

Written by

Eugene Teo

Eugene Teo is a director of security at a US-based technology company. He is interested in applying machine learning techniques to solve problems in the security domain.


Related Posts

Alisha Reyes
Alisha Reyes
— April 9, 2020

New on Cloud Academy: AWS Solutions Architect – Associate Exam Prep, Azure Courses, Google Associate Cloud Engineer Exam Prep, Programming Labs, and Much More

Free content on Cloud Academy More and more customers are relying on our technology and content to keep upskilling their people in these months, and we are doing our best to keep supporting them. While the world fights the COVID-19 pandemic, we wanted to make a small contribution to he...

Read more
  • AWS
  • Azure
  • Google Cloud Platform
  • programming
Joe Nemer
Joe Nemer
— April 3, 2020

Breaking News: All AWS Certification Exams Now Available Online

Remote proctoring for all AWS certifications Cloud Academy is an Advanced AWS Technology Partner, and we are happy to announce all AWS certification exams are available online!  What does this mean for you? You can stay focused on your certification goal. Or you can start a certifica...

Read more
  • AWS
  • AWS certification
  • AWS Certifications
Connie Benton
Connie Benton
— April 1, 2020

How To Build a Career with AWS Certifications

From Iaas and PaaS solutions to digital marketing, cloud computing reshapes the world of technology. As the influence of this technology grows, so does investment. Tens of billions of dollars are being spent on cloud computing-related services each year. This influx is continuing to inc...

Read more
  • AWS
  • Certifications
Vijayakumar Athithan
Vijayakumar Athithan
— March 27, 2020

What is Cognito in AWS?

Web applications usually allow a valid username and password combination for successful sign in to the application. Modern authentication flows incorporate more approaches to ensure user authentication. When using AWS, this is no exception, thanks to the abilities and features offered b...

Read more
  • AWS
  • AWS Cognito
  • Solutions Architect
Avatar
Andrew Larkin
— March 20, 2020

The 12 AWS Certifications: Which is Right for You and Your Team?

As companies increasingly shift workloads to the public cloud, cloud computing has moved from a nice-to-have to a core competency in the enterprise. This shift requires a new set of skills to design, deploy, and manage applications in cloud computing. As the market leader and most ma...

Read more
  • AWS
  • AWS Certifications
Alisha Reyes
Alisha Reyes
— March 17, 2020

Cloud Academy’s Blog Digest: How Do AWS Certifications Increase Your Employability, How to Become a Microsoft Certified Azure Data Engineer, and more

With everything going on right now, it's likely that the only thing you've been reading lately is related to the coronavirus pandemic. It's important to stay informed during these times, but it's also good to jump into something that can take your mind off of the current situation for j...

Read more
  • AWS
  • Azure
  • blog digest
  • Certifications
  • Cloud Academy
  • programming
  • Security
Avatar
Cloud Academy Team
— March 13, 2020

Which Certifications Should I Get?

As we mentioned in an earlier post, the old AWS slogan, “Cloud is the new normal” is indeed a reality today. Really, cloud has been the new normal for a while now and getting credentials has become an increasingly effective way to quickly showcase your abilities to recruiters and compan...

Read more
  • AWS
  • Azure
  • Certifications
  • Cloud Computing
  • Google Cloud Platform
Alisha Reyes
Alisha Reyes
— March 7, 2020

New on Cloud Academy: Intro to GitOps; AWS Courses; Java, Python, Amazon Linux 2, Ubuntu, & Docker Playgrounds; and much more

New Lab Playgrounds This month, our Content Team released six new "playground labs." Our playground labs provide a safe and secure sandbox environment for you to explore your own ideas, follow along with Cloud Academy courses, or answer your own questions — all without having to instal...

Read more
  • AWS
  • Azure
  • gitops
  • Google Cloud Platform
  • lab playground
  • programming
Alisha Reyes
Alisha Reyes
— March 6, 2020

New on Cloud Academy: Intro to GitOps; AWS Courses; Java, Python, Amazon Linux 2, Ubuntu, & Docker Playgrounds; and much more

New Lab Playgrounds This month, our Content Team released six new "playground labs." Our playground labs provide a safe and secure sandbox environment for you to explore your own ideas, follow along with Cloud Academy courses, or answer your own questions — all without having to instal...

Read more
  • AWS
  • Azure
  • gitops
  • Google Cloud Platform
  • lab playground
  • programming
Patrick Navarro
Patrick Navarro
— March 4, 2020

AWS Certifications: How Do They Increase Your Employability and Progress Your Career?

AWS certifications are no walk in the park. They’re designed to validate in-depth, specialist knowledge and comprehensive experience, often requiring months of dedicated studying to earn even for those already working with the cloud platform. But the rewards that AWS professionals ca...

Read more
  • AWS
  • AWS certification
  • certification
Avatar
Chandan Patra
— February 21, 2020

Elasticsearch vs. CloudSearch: AWS Cloud Search Choices

Elasticsearch vs. CloudSearch: What's the main difference? Let's compare AWS-based cloud tools: Elasticsearch vs. CloudSearch. While both services use proven technologies, Elasticsearch is more popular, open source, and has a flexible API to use for customization; in comparison, CloudS...

Read more
  • AWS
  • Azure
  • cloudsearch
  • elasticsearch
Avatar
Andrew Larkin
— February 13, 2020

Cloud Academy Content Roadmap Updates

Welcome to our Q1 2020 roadmap. This is the content we plan to build over the next three months, between February 1 - and April 30, 2020. Let's look at some of our roadmap highlights. Atlassian Bamboo for CI/CD We had a lot of requests for practical guides on how to apply DevOps tool...

Read more
  • Artificial Intelligence
  • AWS
  • Azure
  • Docker
  • Google Cloud Platform
  • Kubernetes
  • Machine Learning