Introduction to Apache Spark and Zeppelin on Google Cloud Dataproc

Want to learn more about using Apache Spark and Zeppelin on Dataproc via the Google Cloud Platform? You’ve come to the right place.

Cloud Dataproc is Google’s answer to Amazon EMR (Elastic MapReduce). Like EMR, Cloud Dataproc provisions and manage Compute Engine-based Apache Hadoop and Spark data processing clusters.
If you are not familiar with Amazon EMR, check out my two-part series about using Apache Spark and Zeppelin on EMR – See Part 1 and Part 2. You may find my notes on IAM helpful, too.

First Impressions: The Key Differences between EMR and Cloud Dataproc

Cloud Dataproc is fairly new. It was first released in beta last September, and is now generally available since February this year. If you have previously used EMR, you may find Cloud Dataproc familiar.
An important difference I have observed is this: In EMR, when you create a cluster, you know exactly what you are installing because you are presented with an option to choose from a list of supported Hadoop components. Cloud Dataproc, on the other hand, will just install all the supported components by default.
EMR is a more mature platform. After all, it has been around since 2009. It has support for many applications, including Tez, Ganglia, Presto, HBase, Pig, Hive, Mahout, Sqoop, and Zeppelin. As for Cloud Dataproc, it only supports Hadoop, Spark, Hive, and Pig (see the supported Cloud Dataproc versions page). Fortunately, you can specify initialization actions when creating a Cloud Dataproc cluster so that you can install the additional software you need.

Installing Zeppelin on Cloud Dataproc

We will go through the steps to do exactly that when we set up Zeppelin with Spark on Cloud Dataproc. Why Zeppelin? It’s an innovative web-based notebook that enables interactive data analytics.
With Zeppelin, you can create data-driven documents based on a variety of different backends, including Hadoop. It’s a great starting project, so let’s jump right into it.

Our Assumptions

Creating a Cloud Dataproc Cluster

Google provided a collection of initialization actions that we can use to install additional (but unsupported) Hadoop components when we create a cluster. For this example, we will use the Zeppelin initialization action.
To use an initialization action, we need to access the initialization action script in a Cloud Storage bucket.
We will not use the publicly-accessible gs://dataproc-initialization-actions Cloud Storage bucket as instructed in the README. At the time of writing, the version of the Zeppelin initialization action script is outdated. If we were to create a cluster with it, we would encounter errors. Let’s upload the script to our own Cloud Storage bucket instead.

$ git clone https://github.com/GoogleCloudPlatform/dataproc-initialization-actions.git
Cloning into 'dataproc-initialization-actions'...
remote: Counting objects: 267, done.
remote: Total 267 (delta 0), reused 0 (delta 0), pack-reused 266
Receiving objects: 100% (267/267), 89.24 KiB | 63.00 KiB/s, done.
Resolving deltas: 100% (88/88), done.
Checking connectivity... done.
$ cd dataproc-initialization-actions/apache-zeppelin/
$ gsutil mb gs://cloudacademy/
Creating gs://cloudacademy/...
$ gsutil cp zeppelin.sh gs://cloudacademy/
Copying file://zeppelin.sh [Content-Type=application/x-sh]...
Uploading   gs://cloudacademy/zeppelin.sh:                       4.47 KiB/4.47 KiB

Next, we will issue the gcloud command to set up a Cloud Dataproc cluster.

$ gcloud dataproc clusters create spark-zeppelin \
> --initialization-actions gs://cloudacademy/zeppelin.sh \
> --initialization-action-timeout 15m
Waiting on operation [projects/operating-spot-133003/regions/global/operations/cdf1fadd-032d-4261-9520-c2f55f8c46fa].
Waiting for cluster creation operation...done.
Created [https://dataproc.googleapis.com/v1/projects/operating-spot-133003/regions/global/clusters/spark-zeppelin].
clusterName: spark-zeppelin
clusterUuid: f05a9f22-5ee6-48c8-83d3-7079e2d1d834
config:
  configBucket: dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia
  gceClusterConfig:
    networkUri: https://www.googleapis.com/compute/v1/projects/operating-spot-133003/global/networks/default
    serviceAccountScopes:
    - https://www.googleapis.com/auth/bigquery
    - https://www.googleapis.com/auth/bigtable.admin.table
    - https://www.googleapis.com/auth/bigtable.data
    - https://www.googleapis.com/auth/cloud.useraccounts.readonly
    - https://www.googleapis.com/auth/devstorage.full_control
    - https://www.googleapis.com/auth/devstorage.read_write
    - https://www.googleapis.com/auth/logging.write
    zoneUri: https://www.googleapis.com/compute/v1/projects/operating-spot-133003/zones/asia-east1-a
  initializationActions:
  - executableFile: gs://cloudacademy/zeppelin.sh
    executionTimeout: 900.000s
  masterConfig:
    diskConfig:
      bootDiskSizeGb: 500
    imageUri: https://www.googleapis.com/compute/v1/projects/cloud-dataproc/global/images/dataproc-1-0-20160516-190717
    instanceNames:
    - spark-zeppelin-m
    machineTypeUri: https://www.googleapis.com/compute/v1/projects/operating-spot-133003/zones/asia-east1-a/machineTypes/n1-standard-4
    numInstances: 1
  softwareConfig:
    imageVersion: '1.0'
    properties:
      distcp:mapreduce.map.java.opts: -Xmx2457m
      distcp:mapreduce.map.memory.mb: '3072'
      distcp:mapreduce.reduce.java.opts: -Xmx4915m
      distcp:mapreduce.reduce.memory.mb: '6144'
      mapred:mapreduce.map.cpu.vcores: '1'
      mapred:mapreduce.map.java.opts: -Xmx2457m
      mapred:mapreduce.map.memory.mb: '3072'
      mapred:mapreduce.reduce.cpu.vcores: '2'
      mapred:mapreduce.reduce.java.opts: -Xmx4915m
      mapred:mapreduce.reduce.memory.mb: '6144'
      mapred:yarn.app.mapreduce.am.command-opts: -Xmx4915m
      mapred:yarn.app.mapreduce.am.resource.cpu-vcores: '2'
      mapred:yarn.app.mapreduce.am.resource.mb: '6144'
      spark:spark.driver.maxResultSize: 1920m
      spark:spark.driver.memory: 3840m
      spark:spark.executor.cores: '2'
      spark:spark.executor.memory: 5586m
      spark:spark.yarn.am.memory: 5586m
      spark:spark.yarn.am.memoryOverhead: '558'
      spark:spark.yarn.executor.memoryOverhead: '558'
      yarn:yarn.nodemanager.resource.memory-mb: '12288'
      yarn:yarn.scheduler.maximum-allocation-mb: '12288'
      yarn:yarn.scheduler.minimum-allocation-mb: '1024'
  workerConfig:
    diskConfig:
      bootDiskSizeGb: 500
    imageUri: https://www.googleapis.com/compute/v1/projects/cloud-dataproc/global/images/dataproc-1-0-20160516-190717
    instanceNames:
    - spark-zeppelin-w-0
    - spark-zeppelin-w-1
    machineTypeUri: https://www.googleapis.com/compute/v1/projects/operating-spot-133003/zones/asia-east1-a/machineTypes/n1-standard-4
    numInstances: 2
projectId: operating-spot-133003
status:
  state: RUNNING
  stateStartTime: '2016-06-07T09:35:33.783Z'
statusHistory:
- state: CREATING
  stateStartTime: '2016-06-07T09:32:56.398Z'

By default, Cloud Dataproc clusters use n1-standard-4 machine type for the master and worker nodes. These are the standard instances with 4 virtual CPUs and 15GB of memory. You can change the defaults by specifying the relevant flags. See the gcloud dataproc clusters create documentation.

$ gcloud compute instances list
NAME                ZONE          MACHINE_TYPE   PREEMPTIBLE  INTERNAL_IP  EXTERNAL_IP      STATUS
spark-zeppelin-m    asia-east1-a  n1-standard-4               10.140.0.2   104.199.169.41   RUNNING
spark-zeppelin-w-0  asia-east1-a  n1-standard-4               10.140.0.4   104.199.160.183  RUNNING
spark-zeppelin-w-1  asia-east1-a  n1-standard-4               10.140.0.3   130.211.248.2    RUNNING

SSH to the Master Node

Now we can connect to the master node remotely. Instead of running ssh directly, we can issue the gcloud compute ssh spark-zeppelin-m command.

$ gcloud compute ssh spark-zeppelin-m
WARNING: The private SSH key file for Google Compute Engine does not exist.
WARNING: You do not have an SSH key for Google Compute Engine.
WARNING: [/usr/bin/ssh-keygen] will be executed to generate a key.
This tool needs to create the directory [/Users/eugeneteo/.ssh] before being
able to generate SSH keys.
Do you want to continue (Y/n)?
Generating public/private rsa key pair.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /Users/eugeneteo/.ssh/google_compute_engine.
Your public key has been saved in /Users/eugeneteo/.ssh/google_compute_engine.pub.
The key fingerprint is:
SHA256:xTjbTqWIfroXr670RWQkscOPfGdY6rzpi14WCoFI5Ko eugeneteo@eugeneteos-MacBook-Pro.local
The key's randomart image is:
+---[RSA 2048]----+
| .o     o..      |
| o . . . *       |
|  o . . * = o    |
| .     + % *     |
|.     o S @ o    |
|.    . ..O +     |
|E     o ooB      |
|     . +.=.o     |
|      +**o=.     |
+----[SHA256]-----+
Updated [https://www.googleapis.com/compute/v1/projects/operating-spot-133003].
Warning: Permanently added 'compute.5792161037633137215' (ECDSA) to the list of known hosts.
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.
Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
eugeneteo@spark-zeppelin-m:~$

Spark’s Scala Shell

We will not cover the Spark programming model in this article, but we will learn just enough to start an interpreter on the command-line and to make sure it works. We will launch spark-shell on YARN.

$ spark-shell --master=yarn
16/06/07 09:53:32 INFO org.spark-project.jetty.server.Server: jetty-8.y.z-SNAPSHOT
16/06/07 09:53:32 INFO org.spark-project.jetty.server.AbstractConnector: Started SocketConnector@0.0.0.0:36325
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /___/ .__/\_,_/_/ /_/\_\   version 1.6.1
      /_/
Using Scala version 2.10.5 (OpenJDK 64-Bit Server VM, Java 1.8.0_72-internal)
Type in expressions to have them evaluated.
Type :help for more information.
16/06/07 09:53:38 INFO akka.event.slf4j.Slf4jLogger: Slf4jLogger started
16/06/07 09:53:38 INFO Remoting: Starting remoting
16/06/07 09:53:38 INFO Remoting: Remoting started; listening on addresses :[akka.tcp://sparkDriverActorSystem@10.140.0.2:40692]
16/06/07 09:53:39 INFO org.spark-project.jetty.server.Server: jetty-8.y.z-SNAPSHOT
16/06/07 09:53:39 INFO org.spark-project.jetty.server.AbstractConnector: Started SelectChannelConnector@0.0.0.0:4040
16/06/07 09:53:39 INFO org.apache.hadoop.yarn.client.RMProxy: Connecting to ResourceManager at spark-zeppelin-m/10.140.0.2:8032
16/06/07 09:53:43 INFO org.apache.hadoop.yarn.client.api.impl.YarnClientImpl: Submitted application application_1465292021581_0001
[...]
scala> val data = sc.parallelize(1 to 100000)
data: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:27
scala> data.filter(_ < 100).collect()
res0: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99)

It worked!

Access the Zeppelin Notebook

Before we can access the Zeppelin Notebook, we will need to create a SSH tunnel to the master node.

$ gcloud compute ssh --ssh-flag="-D 31337" --ssh-flag="-N" --ssh-flag="-n" spark-zeppelin-m

Configure your web browser to use the SOCKS proxy localhost:31337.
Having done that, we can now access http://localhost:8080/.
zeppelin1
zeppelin2
Great! The notebook works, too!

Terminating the Cloud Dataproc Cluster

Always remember to terminate your cluster after you have completed your work to avoid spending more money than you have planned. We are billed by the minute, based on the size of our cluster and the duration we ran our jobs.

$ gcloud dataproc clusters delete spark-zeppelin
The cluster 'spark-zeppelin' and all attached disks will be deleted.
Do you want to continue (Y/n)?  y
Waiting on operation [projects/operating-spot-133003/regions/global/operations/e2b88d41-e215-480e-a970-e6b49c0de574].
Waiting for cluster deletion operation...done.
Deleted [https://dataproc.googleapis.com/v1/projects/operating-spot-133003/regions/global/clusters/spark-zeppelin].
$ gsutil -m rm -r gs://cloudacademy/ gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/
Removing gs://cloudacademy/zeppelin.sh#1465291266953000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/cluster.properties#1465291982908000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-m/dataproc-initialization-script-0_output#1465292128609000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-m/dataproc-startup-script_SUCCESS#1465292128628000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-m/dataproc-startup-script_output#1465292038813000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-w-0/dataproc-initialization-script-0_output#1465292016529000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-w-0/dataproc-startup-script_SUCCESS#1465292016563000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-w-0/dataproc-startup-script_output#1465292015001000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-w-1/dataproc-initialization-script-0_output#1465292016544000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-w-1/dataproc-startup-script_SUCCESS#1465292016575000...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/google-cloud-dataproc-metainfo/f05a9f22-5ee6-48c8-83d3-7079e2d1d834/spark-zeppelin-w-1/dataproc-startup-script_output#1465292014612000...
Removing gs://cloudacademy/...
Removing gs://dataproc-6dfb6ea8-847d-438c-befd-2883003f61e5-asia/...

What We’ve Learned

In this article, we have learned:

  1. How to set up a Cloud Dataproc cluster with Zeppelin.
  2. We have launched spark-shell on YARN.
  3. We have also set up a SSH tunnel to access the Zeppelin Notebook from the master node.

Related Courses

Data Management on Google Cloud Platform might be a place to start. It’s 26 minutes of data management goodness from David Clinton, an expert Linux Sysadmin.
For a guided instructional experience, check out a Cloud Academy Learning Path. We offer a free 7-day trial subscription with access all video courses, self-test quizzes, and labs. Our labs are a great tool for applying what you learned and testing your understanding in a live environment. Get started today!

Written by

Eugene Teo is a director of security at a US-based technology company. He is interested in applying machine learning techniques to solve problems in the security domain.

Related Posts

— November 28, 2018

Two New EC2 Instance Types Announced at AWS re:Invent 2018 – Monday Night Live

Let’s look at what benefits these two new EC2 instance types offer and how these two new instances could be of benefit to you. Both of the new instance types are built on the AWS Nitro System. The AWS Nitro System improves the performance of processing in virtualized environments by...

Read more
  • AWS
  • EC2
  • re:Invent 2018
— November 21, 2018

Google Cloud Certification: Preparation and Prerequisites

Google Cloud Platform (GCP) has evolved from being a niche player to a serious competitor to Amazon Web Services and Microsoft Azure. In 2018, research firm Gartner placed Google in the Leaders quadrant in its Magic Quadrant for Cloud Infrastructure as a Service for the first time. In t...

Read more
  • AWS
  • Azure
  • Google Cloud
Khash Nakhostin
— November 13, 2018

Understanding AWS VPC Egress Filtering Methods

Security in AWS is governed by a shared responsibility model where both vendor and subscriber have various operational responsibilities. AWS assumes responsibility for the underlying infrastructure, hardware, virtualization layer, facilities, and staff while the subscriber organization ...

Read more
  • Aviatrix
  • AWS
  • VPC
— November 10, 2018

S3 FTP: Build a Reliable and Inexpensive FTP Server Using Amazon’s S3

Is it possible to create an S3 FTP file backup/transfer solution, minimizing associated file storage and capacity planning administration headache?FTP (File Transfer Protocol) is a fast and convenient way to transfer large files over the Internet. You might, at some point, have conf...

Read more
  • Amazon S3
  • AWS
— October 18, 2018

Microservices Architecture: Advantages and Drawbacks

Microservices are a way of breaking large software projects into loosely coupled modules, which communicate with each other through simple Application Programming Interfaces (APIs).Microservices have become increasingly popular over the past few years. The modular architectural style,...

Read more
  • AWS
  • Microservices
— October 2, 2018

What Are Best Practices for Tagging AWS Resources?

There are many use cases for tags, but what are the best practices for tagging AWS resources? In order for your organization to effectively manage resources (and your monthly AWS bill), you need to implement and adopt a thoughtful tagging strategy that makes sense for your business. The...

Read more
  • AWS
  • cost optimization
— September 26, 2018

How to Optimize Amazon S3 Performance

Amazon S3 is the most common storage options for many organizations, being object storage it is used for a wide variety of data types, from the smallest objects to huge datasets. All in all, Amazon S3 is a great service to store a wide scope of data types in a highly available and resil...

Read more
  • Amazon S3
  • AWS
— September 18, 2018

How to Optimize Cloud Costs with Spot Instances: New on Cloud Academy

One of the main promises of cloud computing is access to nearly endless capacity. However, it doesn’t come cheap. With the introduction of Spot Instances for Amazon Web Services’ Elastic Compute Cloud (AWS EC2) in 2009, spot instances have been a way for major cloud providers to sell sp...

Read more
  • AWS
  • Azure
  • Google Cloud
— August 23, 2018

What are the Benefits of Machine Learning in the Cloud?

A Comparison of Machine Learning Services on AWS, Azure, and Google CloudArtificial intelligence and machine learning are steadily making their way into enterprise applications in areas such as customer support, fraud detection, and business intelligence. There is every reason to beli...

Read more
  • AWS
  • Azure
  • Google Cloud
  • Machine Learning
— August 17, 2018

How to Use AWS CLI

The AWS Command Line Interface (CLI) is for managing your AWS services from a terminal session on your own client, allowing you to control and configure multiple AWS services.So you’ve been using AWS for awhile and finally feel comfortable clicking your way through all the services....

Read more
  • AWS
Albert Qian
— August 9, 2018

AWS Summit Chicago: New AWS Features Announced

Thousands of cloud practitioners descended on Chicago’s McCormick Place West last week to hear the latest updates around Amazon Web Services (AWS). While a typical hot and humid summer made its presence known outside, attendees inside basked in the comfort of air conditioning to hone th...

Read more
  • AWS
  • AWS Summits
— August 8, 2018

From Monolith to Serverless – The Evolving Cloudscape of Compute

Containers can help fragment monoliths into logical, easier to use workloads. The AWS Summit New York was held on July 17 and Cloud Academy sponsored my trip to the event. As someone who covers enterprise cloud technologies and services, the recent Amazon Web Services event was an insig...

Read more
  • AWS
  • AWS Summits
  • Containers
  • DevOps
  • serverless