Skip to main content

Docker Webinar Part 3: Production & Beyond

Last week, we wrapped up our three-part Docker webinar series. You can watch the Docker Webinar session on the webinars page and find the slides on Speakerdeck. Docker Webinar part one introduced Docker, container technologies, and how to get started in your development environment. It ended with a demo of using Docker Compose for development environments.  Docker Webinar part two covered production deployment options, including the different options in the orchestration space and other production concerns. It wrapped up with a short Kubernetes demo. Docker webinar part three closed the whole series by providing some jumping off points and discussing some of the recurring questions from the previous session.

This post elaborates on some of the common questions around Docker and takes a look at what’s next. Let’s start by covering some of the more entry level questions.

Docker webinar part 3: What is Docker and what should I do with it?

Docker is one part of the suite of tools provided by Docker Inc. to build, ship, and run Docker containers. Docker containers start from Docker images. A Docker image includes everything needed to start the process in an isolated container. It includes all of the source code, supporting libraries, and other binaries that are required. Docker containers run Docker images. Docker containers build on Linux kernel features such as LXC (Linux containers), Cgroups (control groups), and namespaces to fully isolate the container from other processes (or containers) running on the same kernel. In a nutshell, this allows you distribute applications as independent images and run them on any system with the Docker daemon. This provides engineers with important benefits and new approaches.

Docker (and other container technologies) are naturally suited to polygot engineering teams. Docker provides a way to standardize development workflows and deployments. This also increases development and production parity.

Let’s circle back to some concrete things you can and should be using Docker for. It’s easy to get started with Docker in your development environment. Naturally, different projects require different stores and even different versions between projects. This problem is easily solved with Docker containers. Simply start a container for, say, MySQL version 5.x for project A, and version 6.x for project B. Docker Compose makes this easy enough. You can also start containerizing your development process and even CI servers. Containerizing your development process has a few benefits. First up, the setup is tech stack independent apart from Docker (or any other tooling involved). Second, your setup is already moving towards infrastructure as code since all dependencies are listed.

Containerizing your development process has a few benefits. First up, the setup is tech stack independent apart from Docker (or any other tooling involved). Second, your setup is already moving toward infrastructure as code since all dependencies are listed in the Docker file and even dependent databases in a docker-compose.yml file if you opt for that. Third, you can start building Docker images and use them to deploy to production and non-production environments. You can read up on more concrete examples in the part one wrap up.

How is Docker different from Virtual Machines?

This is a common question and here is the short answer. Docker runs all processes on a single kernel. Virtualization runs multiple kernels via a hypervisor on a single host kernel. Docker containers focus on running a single process. Virtual Machines are for running entire operating systems and multiple processes. Docker containers are restricted to the host kernel. That means Docker running on Linux can only run Linux images. Docker on Windows can only run Windows images.

Virtual Machines are the other way around. You may have a Windows host with a Linux guest or vice versa. Virtual Machines also require more compute resources (CPU, Memory, etc.) because each VM requires memory for an entire system and userland. Docker containers share the same host resources. Your machine may only have enough compute to run one VM at a time, but the same machine could run many many more containers. The official Docker website explains this as well. You can also get a free ebook that describes more of the differences (and similarities).

Should I use Docker for Production?

This is a great question! The answer is, you guessed it: It depends. All engineering decisions are about tradeoffs. In our profession, it’s rare that any answer is an absolute yes (unless we’re talking about whether code should have tests). Deciding to build a production system on Docker is no different. There are many tradeoffs and it may make sense in some situations and not others. Start with considering how complex your application is.

Start by considering the complexity of your application. A team building a single web application will be better off using Heroku (or similar) because it solves a lot of the same problems and doesn’t introduce a significant new abstraction layer. Instead, a team building a distributed system using service-oriented or microservices architecture will have different considerations. They have many components written in different languages and need a way to keep things manageable (and distributed systems definitely require management). Docker makes more sense for this team because it provides standard infrastructure to support the system’s infrastructure and technical growth.

The decision whether to use Docker for production ultimately boils down to a few key factors, including: application scale (number of independently deployed components and tech stacks), infrastructure (e.g. is there a hosted service? do we need to roll our own, pre-existing requirements?), and the time and talent on hand. So, if this is right for your team, how do we put Docker in production?

How do I use Docker in Production?

This is probably the hottest question around containers and Docker right now. The short answer and easiest option is to use Google Container Engine. This gives you immediate access a production ready, hosted Kubernetes cluster that you can deploy to.

The longer answer is that you should use an orchestration tool. Deploying containers is about solving problems at scale. It’s not about handling one container, but how to handle hundreds (or thousands of containers) and compose them into larger systems. Orchestration tools solve this problem by building clusters of compute resources (which may be Virtual Machines in the cloud, physical hardware, or both) and providing APIs to deploy, expose, and scale containers running on the cluster.
While there are many orchestration tools in the ecosystem right now, there are a few key players that you should consider. I would recommend checking out Kubernetes (my favorite for container/cloud native applications), DCOS (for container and non-containerized workloads), Docker Swarm Mode / Docker Datacenter (if you want a first party offering and direct access to the docker daemon), and AWS Elastic Container Service (for those AWS based companies who like first party offerings).
You should look into all of the offerings in this space before deciding to roll your own. Odds are, you can bend the orchestration tool to fit your needs and it will be better than anything you (or your team) would create. Take it from someone who knows. However, you may need to roll your own in some scenarios. Using Docker does not magically negate past approaches. The golden image approach still works perfectly well enough. Check out part 2 for more in-depth information on production concerns.

What is the future for Docker?

My blog post from October covers container technologies other than just Docker. Docker Inc. announced that they are open sourcing “containerd,” which is an extraction from the larger Docker project. This bolsters my position in the post.

Right now, there is fierce competition in the production orchestration/deployment space. There are communities developing around each of the orchestration tools and each with different goals. Projects outside the official Docker Inc. umbrella are keen to create solutions that do not dependent on the Docker runtime, but instead support something with different technical values and separate from Docker Inc. This is why a separate “containerd” project in a neutral foundation is important. The open source community and businesses can build better products.

The future for Docker is clear to me. It will be orchestration based and the cloud providers that want to stay relevant will aggressively move into this space by providing turn-key solutions to this problem. The future will be containerized, and containers will no longer imply Docker. Instead, we’ll see a more polygot world where container tools can target different container runtimes.

Well, that’s a wrap for the Docker webinar series! I hope that you have enjoyed these sessions and that you have learned something new about the technology, ecosystem, and real world applications. I had a blast in these sessions, especially answering audience questions. Stay tuned for our future webinars on all things containers, infrastructure, and DevOps.

Good luck out there, and happy shipping!

Avatar

Written by

Adam Hawkins

Passionate traveler (currently in Bangalore, India), Trance addict, Devops, Continuous Deployment advocate. I lead the SRE team at Saltside where we manage ~400 containers in production. I also manage Slashdeploy.

Related Posts

Sam Ghardashem
Sam Ghardashem
— May 15, 2019

Aviatrix Integration of a NextGen Firewall in AWS Transit Gateway

Learn how Aviatrix’s intelligent orchestration and control eliminates unwanted tradeoffs encountered when deploying Palo Alto Networks VM-Series Firewalls with AWS Transit Gateway.Deploying any next generation firewall in a public cloud environment is challenging, not because of the f...

Read more
  • AWS
Joe Nemer
Joe Nemer
— May 3, 2019

AWS Config Best Practices for Compliance

Use AWS Config the Right Way for Successful ComplianceIt’s well-known that AWS Config is a powerful service for monitoring all changes across your resources. As AWS Config has constantly evolved and improved over the years, it has transformed into a true powerhouse for monitoring your...

Read more
  • AWS
  • Compliance
Avatar
Francesca Vigliani
— April 30, 2019

Cloud Academy is Coming to the AWS Summits in Atlanta, London, and Chicago

Cloud Academy is a proud sponsor of the 2019 AWS Summits in Atlanta, London, and Chicago. We hope you plan to attend these free events that bring the cloud computing community together to connect, collaborate, and learn about AWS. These events are all about learning. You can learn how t...

Read more
  • AWS
  • AWS Summits
Paul Hortop
Paul Hortop
— April 2, 2019

How to Monitor Your AWS Infrastructure

The AWS cloud platform has made it easier than ever to be flexible, efficient, and cost-effective. However, monitoring your AWS infrastructure is the key to getting all of these benefits. Realizing these benefits requires that you follow AWS best practices which constantly change as AWS...

Read more
  • AWS
  • Monitoring
Joe Nemer
Joe Nemer
— April 1, 2019

AWS EC2 Instance Types Explained

Amazon Web Services’ resource offerings are constantly changing, and staying on top of their evolution can be a challenge. Elastic Cloud Compute (EC2) instances are one of their core resource offerings, and they form the backbone of most cloud deployments. EC2 instances provide you with...

Read more
  • AWS
  • EC2
Avatar
Nitheesh Poojary
— March 26, 2019

How DNS Works – the Domain Name System (Part One)

Before migrating domains to Amazon's Route53, we should first make sure we properly understand how DNS worksWhile we'll get to AWS's Route53 Domain Name System (DNS) service in the second part of this series, I thought it would be helpful to first make sure that we properly understand...

Read more
  • AWS
Avatar
Stuart Scott
— March 14, 2019

Multiple AWS Account Management using AWS Organizations

As businesses expand their footprint on AWS and utilize more services to build and deploy their applications, it becomes apparent that multiple AWS accounts are required to manage the environment and infrastructure.  A multi-account strategy is beneficial for a number of reasons as ...

Read more
  • AWS
  • Identity Access Management
Avatar
Sanket Dangi
— February 11, 2019

WaitCondition Controls the Pace of AWS CloudFormation Templates

AWS's WaitCondition can be used with CloudFormation templates to ensure required resources are running.As you may already be aware, AWS CloudFormation is used for infrastructure automation by allowing you to write JSON templates to automatically install, configure, and bootstrap your ...

Read more
  • AWS
  • CloudFormation
Badrinath Venkatachari
Badrinath Venkatachari
— February 1, 2019

10 Common AWS Mistakes & How to Avoid Them

Massive migration to the public cloud is changing architecture patterns, operating principles, and governance models. That means new approaches are vital to get a handle on soaring cloud spend. Because the cloud’s short-term billing cycles call for financial discipline, you must empower...

Read more
  • AWS
  • Operations
Avatar
Andrew Larkin
— January 24, 2019

The 9 AWS Certifications: Which is Right for You and Your Team?

As companies increasingly shift workloads to the public cloud, cloud computing has moved from a nice-to-have to a core competency in the enterprise. This shift requires a new set of skills to design, deploy, and manage applications in cloud computing.As the market leader and most ma...

Read more
  • AWS
  • AWS Certifications
Avatar
Andrew Larkin
— January 15, 2019

2018 Was a Big Year for Content at Cloud Academy

As Head of Content at Cloud Academy I work closely with our customers and my domain leads to prioritize quarterly content plans that will achieve the best outcomes for our customers.We started 2018 with two content objectives: To show customer teams how to use Cloud Services to solv...

Read more
  • AWS
  • Azure
  • Cloud Computing
  • Google Cloud Platform
Avatar
Jeremy Cook
— November 29, 2018

Amazon Elastic Inference – GPU Acceleration for Faster Inferencing

“Add GPU acceleration to any Amazon EC2 instance for faster inference at much lower cost (up to 75% savings)”So you’ve just kicked off the training phase of your multilayered deep neural network. The training phase is leveraging Amazon EC2 P3 instances to keep the training time to a...

Read more
  • AWS
  • Elastic Inference
  • re:Invent 2018