Which Cloud Computing Platform? Advantages of a Multi-Cloud Strategy

The rivalry is warming up in the cloud space as vendors continue to offer innovative features and reduced pricing. In this post, we will highlight the competition between the three titans of the cloud: Google Cloud Platform (GCP), Amazon Web Services (AWS), and Microsoft’s Azure. Which of these three will thrive and win the battle? Only time will tell.  We also have IBM Softlayer and Alibaba’s AliCloud joining the bandwagon.

Although AWS (Amazon Web Services) has a noteworthy head start, Microsoft and Google are not out of the race. Today, Google is developing 12 new cloud data centers over the next 18 months. Both of these cloud vendors have the money, power, marketing bling, and technology to draw enterprise and individual customers.

This post will address the question of ‘Which cloud computing platform should I choose?, including a brief introduction to each platform, and we’ll review the advantages of a multi-cloud strategy.

IaaS Magic Quadrant
IaaS Magic Quadrant

So, which cloud computing platform should you choose?

Amazon Web Services
AWS has well organized and distributed data centers commissioned across the globe. Availability Zones are strategically placed so that failure at one AZ doesn’t affect another location.

Microsoft
Microsoft has been quickly building more and more data centers across the world to catch up with Amazon’s vast geographical presence. Starting with six regions in 2011, they currently have 22 regions, each of which contains one or more data centers. Five additional regions are planned to open in 2016. While Amazon was the first to open a region in China, Microsoft opened the India region at the end of 2015.

Google
Google has the smallest geographical presence of the three cloud providers. Google makes up for its geographical limitations with the help of its worldwide network infrastructure, providing low-latency and high-speed connectivity within its data centers, both at a regional and interregional level.

Computing
Amazon’s Elastic Compute Cloud (EC2) offers core compute service, enabling users to form virtual machines with the help of pre-configured or custom based AMIs. You can choose the power, size, number of VMs, and memory capacity, and select from diverse availability zones from which to launch. It also provides auto-scaling and ELB (load balancing). ELB allocates charges through instances for improved performance, and auto-scaling enables its users to spontaneously and automatically scale available EC2 (Elastic Compute Cloud) volume, high or low.

In 2012, Google launched its cloud computing service known as GCE (Google Compute Engine). GCE allows users to start VMs, much like AWS, into availability groups and regions. Google Compute Engine was not generally available until 2013. Subsequently, Google added improvements, such as comprehensive support for Operating Systems, load balancing, faster persistent disks, live migration of virtual machines, and instances with more cores.

In 2012, Microsoft launched its cloud compute services, but they were not generally accessible until May 2013. Its users select a Virtual Hard Disk (VHD), which is similar to Amazon’s AMI, for VM creation. A Virtual Hard Disk could also be predefined by third parties, by Microsoft, or even by the user. With every virtual machine, you are required to specify the amount of memory and number of cores.

Storage
Storage is one of the primary elements of IT. Today, we’ll focus on the two primary storage types: Block storage and Object storage.

Amazon
Amazon offers its block storage service, known as EBS (Elastic Block Storage), and it can support three different types of persistent disks: SSD, Magnetic, and SSD with provisioned Input/Output Operations per Second (IOPS). The volume sizes range from a maximum of 1TB for magnetic disks, to 16TB for SSD.
Amazon’s world-leading object storage service known as S3 (Simple Storage Service) has four different SLAs: standard, reduced redundancy, regular – infrequent access, and Glacier. All data is deposited in a single availability zone unless it is simulated manually over regions or availability zones.

Microsoft
Microsoft refers to its storage services as Blobs. Disks and Page Blobs are its block storage service. It can be sourced as Premium or standard, with volume sizes of 1TB. Block Blobs is its object storage service. It offers three different SLAs: LRS (Locally redundant storage) where terminated data copies are kept inside the same data center; ZRS (zone redundant storage), where copies of redundant data are maintained in diverse data centers in the same region; and GRS (geographically redundant storage) which executes LRS (Locally redundant storage) on two detached data centers for maximum availability and durability.

Google
In the Google cloud computing space, storage is structured differently. Block storage does not have a particular category but has an add-on to instances within Google Cloud Engine (GCE). Google offers two choices: magnetic or SSD volumes, though the IOPS tally is static. The ephemeral disk is completely configurable and is a chunk of the storage offering. Object storage known as Google Storage is divided into three modules: Standard, Durable Reduced Availability for less or non-critical data, and Nearline for archives.

Networking
Amazon’s VPCs (Virtual Private Clouds) and Azure’s VNET (Virtual Network) enables users to cluster virtual machines into remote networks in the cloud. Using VNETs and VPCs, users can outline a network topology, create route tables, subnets, network gateways, and private IP address ranges. Both have ways to extend it to your on-premises data center into the public cloud. Instead, every GCE instance has a single network that outlines the gateway address and address range for all instances linked to it. You can apply firewall rules to an instance, and it can accept a public IP address.

Billing Structure
Amazon Web Services 
AWS categorizes resources under accounts. Each account comprises a single billing unit within which cloud resources are provisioned. Companies with numerous AWS accounts would want a single combined bill instead of several separate bills. AWS permits this by generating consolidated billing. In AWS, one of the accounts is identified as a unified account and other accounts are connected to it, linking accounts. The bills are then combined to contain billing for all of the consolidated and linked accounts; together it is referred to as a consolidated billing account family.

Microsoft
Microsoft engages a tiered approach to account management. The subscription is the lowermost in the ladder, and individual consumes and provisions resources. An account manages several subscriptions. It might sound similar to the AWS account structure, but Microsoft’s Azure accounts are management units, and they do not use resources by themselves. For companies without MS Enterprise Agreements, this is where the grading ends. Those with Enterprise Agreements may register their Enterprise Agreements in Azure and can manage accounts under them with department administrative and discretionary cost center hierarchies.

Google
Google uses a flat pyramid structure for its billing. The resources are clustered under groups known as Projects. There is no entity higher than projects; nevertheless, several projects could be gathered under a consolidated billing account. This billing statement is similar to Azure’s accounts in that these billing statements are not a consuming entity and also cannot provision services.

Pricing
Cloud service vendors are providing different pricing and discounts models for their cloud services. The maximum of all such complex pricing and discounts models are compute services, whereas bulk discounts are typically used with all remaining services. Why? First, vendors are in a very competitive market and would like to lock users in for a long-term commitment. Second, they would also like to make the most use of their infrastructure, where each available VM hour represents a loss.

Amazon Web Services
AWS has the most diversified and complex pricing models for its Elastic Compute Cloud (EC2) services:
 On-demand: Clients pay for what they use without paying any upfront costs.
 Reserved Instances: Customers reserve instances for one or three years with an upfront cost based on use. Payment options include:

  • All-upfront: The customer pays for the total commitment upfront and receives the uppermost discount rate
  • Partial-upfront: The customer pays 50-70 percent of the commitment up front, and the remaining is paid in monthly installments. Here, the client receives a somewhat lower discount compared to all upfront.
  • No-upfront: The customer pays nothing upfront, and the sum is paid in monthly installments over the term of the reservation. The customer receives a much lower discount under this payment option. 

Microsoft
Microsoft bills its clients by rounding up the utilized number of minutes on demand. Azure also provides short-term obligations with discounts. Discounts are offered only for bulk financial commitments through pre-paid subscriptions, which provides a five percent discount on the bill, or through Microsoft’s Enterprise Agreements, where higher discounts may be applied to an upfront financial obligation by the client.

Google
GCP bills for instances by rounding up the number of utilized minutes, with 10 minutes as a minimum base. It recently declared new sustained-use pricing for computing services offering more flexible and a simpler approach. Sustained-use pricing will automatically discount the on-demand baseline hourly rate as a particular instance is used for a larger percentage of the month.

The Bottom Line
The public cloud war slogs on. It is likely that prices may continue to drop, and attractive and innovative features may continue to appear. Cloud computing is here to stay, and with the growing maturity of private and public cloud platforms with the massive adoption of IaaS , enterprises now understand that depending on a single cloud vendor is not a long-term option. Issues such as vendor lock-in, higher availability, and leveraging competitive pricing may push enterprises to look for an optimal mix of clouds for their requirements rather than a sole provider.

Avatar

Written by

Sudhi Seshachala

Sudhi is part of Cloud Technology Partners & is a trusted advisor and strategic consultant to many C level executives and IT Directors. He brings 18+ years diverse experience covering software, IT operations, cloud technologies, and management. Have led several global teams in HP, Sun/Oracle, SeeBeyond and few startups to deliver scalable and highly available business/technology products and solutions. He has expertise in systems management, monitoring and integrated SaaS and on-premise applications addressing a wide range of business problems.


Related Posts

Avatar
Guy Hummel
— December 12, 2019

Google Cloud Platform Certification: Preparation and Prerequisites

Google Cloud Platform (GCP) has evolved from being a niche player to a serious competitor to Amazon Web Services and Microsoft Azure. In 2019, research firm Gartner placed Google in the Leaders quadrant in its Magic Quadrant for Cloud Infrastructure as a Service for the second consecuti...

Read more
  • AWS
  • Azure
  • Google Cloud Platform
Alisha Reyes
Alisha Reyes
— December 10, 2019

New Lab Challenges: Push Your Skills to the Next Level

Build hands-on experience using real accounts on AWS, Azure, Google Cloud Platform, and more Meaningful cloud skills require more than book knowledge. Hands-on experience is required to translate knowledge into real-world results. We see this time and time again in studies about how pe...

Read more
  • AWS
  • Azure
  • Google Cloud
  • hands-on
  • labs
Alisha Reyes
Alisha Reyes
— December 5, 2019

New on Cloud Academy: AWS Solution Architect Lab Challenge, Azure Hands-on Labs, Foundation Certificate in Cyber Security, and Much More

Now that Thanksgiving is over and the craziness of Black Friday has died down, it's now time for the busiest season of the year. Whether you're a last-minute shopper or you already have your shopping done, the holidays bring so much more excitement than any other time of year. Since our...

Read more
  • AWS
  • AWS solution architect
  • AZ-203
  • Azure
  • cyber security
  • FCCS
  • Foundation Certificate in Cyber Security
  • Google Cloud Platform
  • Kubernetes
Avatar
Cloud Academy Team
— December 4, 2019

Understanding Enterprise Cloud Migration

What is enterprise cloud migration? Cloud migration is about moving your data, applications, and even infrastructure from your on-premises computers or infrastructure to a virtual pool of on-demand, shared resources that offer compute, storage, and network services at scale. Why d...

Read more
  • AWS
  • Azure
  • Data Migration
Wendy Dessler
Wendy Dessler
— November 27, 2019

6 Reasons Why You Should Get an AWS Certification This Year

In the past decade, the rise of cloud computing has been undeniable. Businesses of all sizes are moving their infrastructure and applications to the cloud. This is partly because the cloud allows businesses and their employees to access important information from just about anywhere. ...

Read more
  • AWS
  • Certifications
  • certified
Avatar
Andrea Colangelo
— November 26, 2019

AWS Regions and Availability Zones: The Simplest Explanation You Will Ever Find Around

The basics of AWS Regions and Availability Zones We’re going to treat this article as a sort of AWS 101 — it’ll be a quick primer on AWS Regions and Availability Zones that will be useful for understanding the basics of how AWS infrastructure is organized. We’ll define each section,...

Read more
  • AWS
Avatar
Dzenan Dzevlan
— November 20, 2019

Application Load Balancer vs. Classic Load Balancer

What is an Elastic Load Balancer? This post covers basics of what an Elastic Load Balancer is, and two of its examples: Application Load Balancers and Classic Load Balancers. For additional information — including a comparison that explains Network Load Balancers — check out our post o...

Read more
  • ALB
  • Application Load Balancer
  • AWS
  • Elastic Load Balancer
  • ELB
Albert Qian
Albert Qian
— November 13, 2019

Advantages and Disadvantages of Microservices Architecture

What are microservices? Let's start our discussion by setting a foundation of what microservices are. Microservices are a way of breaking large software projects into loosely coupled modules, which communicate with each other through simple Application Programming Interfaces (APIs). ...

Read more
  • AWS
  • Docker
  • Kubernetes
  • Microservices
Nisar Ahmad
Nisar Ahmad
— November 12, 2019

Kubernetes Services: AWS vs. Azure vs. Google Cloud

Kubernetes is a popular open-source container orchestration platform that allows us to deploy and manage multi-container applications at scale. Businesses are rapidly adopting this revolutionary technology to modernize their applications. Cloud service providers — such as Amazon Web Ser...

Read more
  • AWS
  • Azure
  • Google Cloud
  • Kubernetes
Avatar
Stuart Scott
— October 31, 2019

AWS Internet of Things (IoT): The 3 Services You Need to Know

The Internet of Things (IoT) embeds technology into any physical thing to enable never-before-seen levels of connectivity. IoT is revolutionizing industries and creating many new market opportunities. Cloud services play an important role in enabling deployment of IoT solutions that min...

Read more
  • AWS
  • AWS IoT Events
  • AWS IoT SiteWise
  • AWS IoT Things Graph
  • IoT
Avatar
Cloud Academy Team
— October 23, 2019

Which Certifications Should I Get?

As we mentioned in an earlier post, the old AWS slogan, “Cloud is the new normal” is indeed a reality today. Really, cloud has been the new normal for a while now and getting credentials has become an increasingly effective way to quickly showcase your abilities to recruiters and compan...

Read more
  • AWS
  • Azure
  • Certifications
  • Cloud Computing
  • Google Cloud Platform
Valery Calderón Briz
Valery Calderón Briz
— October 22, 2019

How to Go Serverless Like a Pro

So, no servers? Yeah, I checked and there are definitely no servers. Well...the cloud service providers do need servers to host and run the code, but we don’t have to worry about it. Which operating system to use, how and when to run the instances, the scalability, and all the arch...

Read more
  • AWS
  • Lambda
  • Serverless