What is Cloud Computing?

If you’re wondering what is cloud computing and how it works, then this series is for you. In our first post, we’ll answer the question: What is cloud computing, and we’ll talk about cloud computing resources, cloud deployment models, and key cloud concepts.

Stay tuned for our next post, where we’ll cover cloud service models, cloud computing use cases, and more.

What is cloud computing?

Cloud computing adoption is a key strategy for many organizations. The significant business and technical advantages offered by the cloud are changing the landscape of how many companies and corporations operate on a huge scale.

Put simply, cloud computing is a remote virtual pool of on-demand shared resources offering Compute, Storage, and Network services that can be rapidly deployed at scale. Cloud computing technology is based on virtualization. Virtualization allows the possibility of having multiple virtual machines, each essentially running a separate operating system and applications installed on one physical server. These VMs all run at the same time without being aware of each other’s existence, while sharing the underlying hardware resources of the server.

There are obvious benefits of virtualization, including reduced capital expenditure. Because you can have multiple VMs installed on one physical host, you don’t need to purchase as much physical hardware. Less hardware means a smaller footprint for your data center or server farm, and lower costs for power and cooling. In a cloud environment, the optimization of resourcing and equipment means that everyone who uses the infrastructureboth vendors and consumerscan benefit from this approach.
Now, just a quick note before we leave the topic of virtualization. A VM within the public cloud is sometimes referred to as an instance. This term is very vendor specific, but it refers to the same object as a virtual machine.

Cloud computing resources

When discussing resources within cloud computing, it won’t be long before you come across the following terms: Compute, Storage, and Network Resources. A clear understanding of each is essential for identifying what services you want to move to a cloud, should you decide to do so.

Compute. Compute objects provide the brains to process your workload, including what is required to process and run requests from your applications and services. In the cloud, compute resources compare to the hardware devices with CPUs and RAM, typically your servers, and how they work in a classic, on the ground environment.

Storage. Storage resources simply allow you to save your data across a shared environment. Any object that allows you to save your data in the cloud is a storage resource. In a typical environment, these would be seen as server hard discs, network attached storage (NAS) used for file level shared storage access over the network, and the high-speed storage area network (SAM), which is block level shared storage accessed over a high-speed network.

Network Resources. These provide the connectivity that allows all of the other resources to communicate with each other. In a typical environment, this would be accomplished through hardware such as routers (to route traffic between your networks), switches (which provide the background of network connectivity that allows other hosts to talk to one another), and firewalls (to allow or deny traffic into the environment).

If we go back to our original definition of what is cloud computing, we can say that it is a remote virtual pool of on-demand shared resources offering compute, storage, and network services that can be rapidly deployed at scale.

Cloud Deployment Models

Within cloud computing there are three typical cloud models for different levels of management and security: public, private, and hybrid.

Public cloud. A public cloud model is where a vendor makes available the use of a shared infrastructure, including compute storage and network resources that can be provisioned on demand and typically accessed over the internet for public usage. The consumer will never see the hardware used, nor know the exact location of their data, but they will be able to specify the geographical region to aid with the speed of performance, depending on where users are located.

From a design perspective, it makes sense to host your infrastructure as close as possible to your users’ geographic region to reduce latency. All back end maintenance for physical location services such as power, cooling, etc., along with the physical maintenance of host and hardware failures will be maintained by the vendor and invisible to the end user. As a general rule, you can access your services on the public cloud from anywhere as long as you have an internet connection.

Private cloud. With a private cloud, the infrastructure is privately hosted, managed, and owned by the individual company using it, giving it greater and more direct control of its data. As a result, the hardware is usually held on premise. This differs from a typical on-premise server file approach in that the same cloud principles are applied to the design, such as the use of virtualization. This creates a pool of shared compute, storage, and network resources.

With this approach, greater capital expenditure is required to acquire the host and the data center where they physically reside. Additional resources will be needed for the day-to-day operations and maintenance of this equipment. As a result, your daily operational costs will also increase compared to that of a public cloud model.

Hybrid cloud. The hybrid cloud makes use of both public and private clouds. This model may be used for seasonal burst traffic or disaster recovery.

A hybrid model is established when a network link is configured between the private cloud to the services within the public cloud, essentially extending the logical internal network. This takes the benefits given from both the public and private models and allows you to architect your services in the most appropriate model. Hybrid clouds are normally short-term configurations, perhaps for test and def purposes, and can often be a transitional state for enterprises before moving their service to the public cloud entirely.

Key Cloud Concepts

There are a number of important characteristics that allows cloud computing to be such a powerful service.  
On-demand resourcing. When you want to provision a source within the cloud, it’s almost immediately available to you. You can allocate it when and where you need it, so there’s no more waiting around for hardware to be ordered and stored, cabled and configured before using it.

Scalable. Cloud computing allows you to rapidly scale your environment’s resources up and down, and in and out, depending on the requirements and demands of your applications and services. When scaling up and down, you’re altering the power of an instance, perhaps using one with a greater CPU power. When scaling in and out, you’re simply adding or removing the number of instances you’re using. This offers a significant advantage compared to on-premise solutions from a cost perspective alone.
Because public cloud resources are optimized and shared between different organizations, the end user can benefit from exceptionally low compute storage and network costs compared to traditional hosting.

Flexibility and elasticity. Cloud computing offers huge flexibility and elasticity to your design approach. You can choose to have as many or as few resources as you require. You decide how much and how long you want them for, and at what scale. There are no retention contracts to adhere to for services.
Growth. Cloud computing offers your organization the ability to grow using a wide range of resources and services. Couple this with the on-demand element that we’ve already mentioned and your growth constraints are significantly reduced compared to a classic environment.
Utility-based metering. With many cloud services, you only pay for what you use. If you only have one server, or instance, running for two hours, and then shut it down, you only pay for two hours of compute resources. That’s it. You only pay for resources when you use them.

Shared infrastructure. Hosts within the cloud are virtualized. As a result, multiple tenants can be running instances on the same piece of hardware. This significantly reduces the amount of physical hardware required, which in turn reduces the amount of power, cording, and space required in the data center. In turn, this results in lower costs for you.

Highly available. By design, many of the core services with the public cloud and its underlying infrastructure are replicated across different geographic zones. Having data covered in multiple different places automatically helps you ensure the durability and availability of your data and services without even having to configure an architect for this resilience. It’s all provided by the vendor as a part of their service.
Security. This is one of the most discussed topics within cloud computing. Public cloud vendors such as Amazon Web Services and Microsoft Azure are considered to be more secure than your own data center. This is achieved by adhering to a shared responsibility model between the vendor and yourself. The vendor will operate at an exceptionally high standard of security for the underlying infrastructure of the cloud, and it’s down to you, the end user, to then architect security in the cloud using the tools, services, and applications available.

These are the key characteristics of cloud computing. You can see how different it is from the classic on-premise data center deployment that you may be used to.

Next: Cloud service models, use cases, and more

Stay tuned for our next post, or check out our free course What is Cloud Computing?

If you’re interested to learn more about the basic concepts of cloud computing and the different deployment models, I recommend the Cloud Academy’s What is Cloud Computing? Course Watch this short video for an overview of the course.

Avatar

Written by

Cloud Academy Team


Related Posts

Alisha Reyes
Alisha Reyes
— October 1, 2019

New on Cloud Academy: ITIL® 4, Microsoft 365 Tenant, Jenkins, TOGAF® 9.1, and more

At Cloud Academy, we're always striving to make improvements to our training platform. Based on your feedback, we released some new features to help make it easier for you to continue studying. These new features allow you to: Remove content from “Continue Studying” section Disc...

Read more
  • AWS
  • Azure
  • Google Cloud Platform
  • ITIL® 4
  • Jenkins
  • Microsoft 365 Tenant
  • New content
  • Product Feature
  • Python programming
  • TOGAF® 9.1
Avatar
Jeremy Cook
— September 17, 2019

Cloud Migration Risks & Benefits

If you’re like most businesses, you already have at least one workload running in the cloud. However, that doesn’t mean that cloud migration is right for everyone. While cloud environments are generally scalable, reliable, and highly available, those won’t be the only considerations dri...

Read more
  • AWS
  • Azure
  • Cloud Migration
Joe Nemer
Joe Nemer
— September 6, 2019

Google Cloud Functions vs. AWS Lambda: The Fight for Serverless Cloud Domination

Serverless computing: What is it and why is it important? A quick background The general concept of serverless computing was introduced to the market by Amazon Web Services (AWS) around 2014 with the release of AWS Lambda. As we know, cloud computing has made it possible for users to ...

Read more
  • AWS
  • Azure
  • Google Cloud Platform
Alisha Reyes
Alisha Reyes
— August 30, 2019

New on Cloud Academy: CISSP, AWS, Azure, & DevOps Labs, Python for Beginners, and more…

As Hurricane Dorian intensifies, it looks like Floridians across the entire state might have to hunker down for another big one. If you've gone through a hurricane, you know that preparing for one is no joke. You'll need a survival kit with plenty of water, flashlights, batteries, and n...

Read more
  • AWS
  • Azure
  • Google Cloud Platform
  • New content
  • Product Feature
  • Python programming
Alisha Reyes
Alisha Reyes
— August 22, 2019

How to Unlock Complimentary Access to Cloud Academy

Are you looking to get trained or certified on AWS, Azure, Google Cloud Platform, DevOps, Cloud Security, Python, Java, or another technical skill? Then you'll want to mark your calendars for August 23, 2019. Starting Friday at 12:00 a.m. PDT (3:00 a.m. EDT), Cloud Academy is offering c...

Read more
  • AWS
  • Azure
  • cloud academy content
  • complimentary access
  • GCP
  • on the house
Avatar
Andrew Larkin
— August 13, 2019

Content Roadmap: AZ-500, ITIL 4, MS-100, Google Cloud Associate Engineer, and More

Last month, Cloud Academy joined forces with QA, the UK’s largest B2B skills provider, and it put us in an excellent position to solve a massive skills gap problem. As a result of this collaboration, you will see our training library grow with additions from QA’s massive catalog of 500+...

Read more
  • AWS
  • Azure
  • content roadmap
  • Google Cloud Platform
Avatar
Andrew Larkin
— August 7, 2019

Disadvantages of Cloud Computing

If you want to deliver digital services of any kind, you’ll need to estimate all types of resources, not the least of which are CPU, memory, storage, and network connectivity. Which resources you choose for your delivery —  cloud-based or local — is up to you. But you’ll definitely want...

Read more
  • AWS
  • Azure
  • Cloud Computing
  • Google Cloud Platform
Orion Withrow
Orion Withrow
— July 24, 2019

How to Effectively Use Azure Management Groups, Subscriptions, and Resource Groups

When used individually, Azure Management Groups, Subscriptions, and Resource Groups are very powerful. But when used together, they can establish the entire organizational structure of Azure. In this article, I will explain Azure Resource Manager, Management Groups, Subscriptions an...

Read more
  • Azure
  • azure management groups
  • azure resource groups
  • azure subscriptions
Alisha Reyes
Alisha Reyes
— July 22, 2019

Cloud Academy’s Blog Digest: July 2019

July has been a very exciting month for us at Cloud Academy. On July 10, we officially joined forces with QA, the UK’s largest B2B skills provider (read the announcement). Over the coming weeks, you will see additions from QA’s massive catalog of 500+ certification courses and 1500+ ins...

Read more
  • AWS
  • Azure
  • Cloud Academy
  • Cybersecurity
  • DevOps
  • Kubernetes
Avatar
Paola Di Pietro
— July 19, 2019

Top 10 Things Cybersecurity Professionals Need to Know

There has been an increase in data breaches over the recent years. With almost 143 million Americans who have had their data compromised in data breaches. These breaches include all sorts of sensitive data, including financial information, election controversies, social security, just t...

Read more
  • Azure
  • cyber security
  • Security
Avatar
Guy Hummel
— June 26, 2019

Running Apache Spark on Azure Databricks

In this article, we’ll cover how to set up an Azure Databricks cluster and how to run queries in an interactive notebook. However, this article only scratches the surface of what you can do with Azure Databricks. If you would like to learn more, including how to create graphs, run sched...

Read more
  • Azure
Avatar
Thomas Mitchell
— June 25, 2019

Understanding the Core Azure Architectural Components

Microsoft Azure relies on a few key architectural components to provide redundancy and high availability. Core Azure architectural components include Azure regions, Azure Availability Zones, resource groups, and the Azure Resource Manager. In this article, we’ll discuss the basics ab...

Read more
  • Azure