Amazon Rekognition – Image analysis as a Service

Amazon Rekognition: the new Image Analysis tool powered by Deep Learning

Amazon itself has been powered by Machine Learning technologies for almost two decades. AWS started releasing part of that powerful technology as a service, starting from Amazon Machine Learning, two years ago.
Just a few weeks ago, AWS announced the new P2 instance types (up to 16 GPUs) and a Deep Learning AMI. Less than a week ago, Amazon also announced their investment in MXNet, as their preferred Deep Learning framework.

During the first re:Invent 2016 Keynote, Andy Jassy announced a whole new set of services based on Deep Learning: Rekognition, Polly, and Lex.

Here is a recap of the main functionalities offered by Amazon Rekognition.

What is Amazon Rekognition?

Given the explosive growth of images in the past few years, the ability to search, verify, and organize millions of images will unlock a whole new set of possibilities. This is especially true because the technology is offered to everyone as a simple set of APIs. In 2017 alone, we expect that 1.2 trillion images will be taken.

Amazon Rekognition is a fully managed service that will allow you to extract information from images to make your application smarter and your customers’ experience better. Rekognition comes with built-in object and scene detection and facial analysis capabilities.
Also, because Amazon Rekognition is powered by deep learning, the underlying models will keep improving in accuracy over time, offering a better service in a transparent way.
A few more interesting details about Amazon Rekognition:

  • It allows both real-time and batch processing.
  • It’s already available in three AWS Regions (US East, US West, and EU West).
  • It includes a free tier of 5,000 images per month for the first 12 months of usage.
  • It’s already well integrated with S3, Lex, and Polly.
  • It does NOT store your images or any sensitive information contained in them, but only a vector representation of the images you upload, which is then used for indexing, search, etc.

The AWS Console looks nice and intuitive:
Amazon Rekognition Console Demo

Amazon Rekognition API Overview

So, what can you do with Amazon Rekognition?
The two main features allow you to detect objects and faces in any given picture.
Specifically, object and scene detection will provide a set of labels and concepts found in the image. On the other hand, facial analysis allows you to find, compare, and search faces.
Let’s recap each API.

DetectLabels

This API takes individual images as input and returns an ordered list of labels and a corresponding numeric confidence index.
As shown in the screenshot above, this API will return a given number of labels starting from the most certain (or confident). The JSON output will look something like the following:

{
    "Labels": [
        {
            "Confidence": 91.47468566894531,
            "Name": "City"
        },
        {
            "Confidence": 91.47468566894531,
            "Name": "Downtown"
        },
        {
            "Confidence": 91.47468566894531,
            "Name": "Metropolis"
        },
        {
            "Confidence": 91.47468566894531,
            "Name": "Urban"
        },
        {
            "Confidence": 56.20014190673828,
            "Name": "Building"
        }
    ]
}

In this case, the first four labels have a pretty high level of confidence – over 90% – while the fifth is only 56%. As I mentioned above, the list of labels is ordered by confidence and, in most cases, you can simply ignore labels below an arbitrary threshold.

Typical use cases for this API are smart search applications and automatic tagging. For example, you may want to implement dynamic search indexing with AWS Lambda and Elasticsearch, which generate newly indexed items each time a new file is loaded into S3.

DetectFaces

This API takes individual images as input and will detect the presence and location of faces. In addition to the face bounding box and landmarks, the API will also return a set of quality attributes about each face, such as detected emotions, gender, glasses, open or closed eyes, mustache, beard, smiling, etc.
Amazon Rekognition Face Detection
This API will return a JSON similar to the following:

{
    "FaceDetails": [
        {
            "Beard": {
                "Confidence": 97.11119842529297,
                "Value": false
            },
            "BoundingBox": {...},
            "Confidence": 99.8899917602539,
            "Emotions": [
                {
                    "Confidence": 93.29251861572266,
                    "Type": "HAPPY"
                },
                {
                    "Confidence": 28.57428741455078,
                    "Type": "CALM"
                },
                {
                    "Confidence": 1.4989674091339111,
                    "Type": "ANGRY"
                }
            ],
            "Eyeglasses": {
                "Confidence": 99.99998474121094,
                "Value": true
            },
            "EyesOpen": {
                "Confidence": 96.2729721069336,
                "Value": true
            },
            "Gender": {
                "Confidence": 100,
                "Value": "Female"
            },
            "Landmarks": [
                {
                    "Type": "eyeLeft",
                    "X": 0.23941855132579803,
                    "Y": 0.2918034493923187
                },
                {
                    "Type": "eyeRight",
                    "X": 0.3292391300201416,
                    "Y": 0.27594369649887085
                },
                {
                    "Type": "nose",
                    "X": 0.29817715287208557,
                    "Y": 0.3470197319984436
                },
                ...
            ],
            "MouthOpen": {
                "Confidence": 72.5211181640625,
                "Value": true
            },
            "Mustache": {
                "Confidence": 77.63107299804688,
                "Value": false
            },
            "Pose": {
                "Pitch": 8.250975608825684,
                "Roll": -8.29802131652832,
                "Yaw": 14.244261741638184
            },
            "Quality": {
                "Brightness": 46.077880859375,
                "Sharpness": 100
            },
            "Smile": {
                "Confidence": 99.47274780273438,
                "Value": true
            },
            "Sunglasses": {
                "Confidence": 97.63555145263672,
                "Value": true
            }
        }
    ]
}

Typical use cases for this API are photo recommendations based on facial attributes and sentiment analysis of in-store customers.

CompareFaces

This API is probably the most interesting, as it allows you to upload two images. The source image will contain one reference face, which will be compared to every face found in the second target image. For each target face, a Similarity Index will be computed.
Interestingly, the face comparison problem can be much harder for humans than for machines, unless you only consider your family and close friends. Outside a person’s close circle of friends or ethic group, comparing faces becomes more difficult.

Amazon’s deep learning model, on the other hand, has been trained on a huge dataset of images that contains faces of different qualities, sizes, distortion conditions, and ethnic groups, which gives it an impressive 98% average accuracy.
Amazon Rekognition Face Comparison
The API will return a JSON similar to the following:

{
    "FaceMatches": [
        {
            "Face": {
                "BoundingBox": {...},
                "Confidence": 99.99597930908203
            },
            "Similarity": 92
        },
        {
            "Face": {
                "BoundingBox": {...},
                "Confidence": 99.97322845458984
            },
            "Similarity": 0
        },
        {
            "Face": {
                "BoundingBox": {...},
                "Confidence": 99.94225311279297
            },
            "Similarity": 0
        }
    ],
    "SourceImageFace": {
        "BoundingBox": {...},
        "Confidence": 99.93081665039062
    }
}

Typical use cases for this API are face-based verification (i.e. seamless access for hotel rooms, online exam identification, etc.) and person localization for public safety.

IndexFaces, SearchFacesByImage, and SearchFacedByID

This set of APIs allows you to build a searchable collection of faces and then query this index either by image or by ID.
Once you have uploaded a large set of images, AWS will extract facial information and build a searchable index. You can query this index by uploading a face image, and Amazon Rekognition will return all of the original images where the given face was found. Also, you can query the index by ID, which is the unique identifier associated with the vector representation of a face. You may want to use such an index to map between these IDs and the input images since Amazon Rekognition will NOT store any image you upload and you will probably need to map IDs back to the original face image.
Please note that you won’t need to call IndexFaces and DetectFaces separately, as you can directly obtain the same facial features by invoking IndexFaces with a special parameter.

Conclusion

Amazon Rekognition looks great. It is a fully managed and highly scalable service that offers advanced image analysis functionalities in a secure and low-cost fashion.

Earlier this year, I wrote about the Google Vision API, and I am definitely looking forward to performing some benchmarks. However, it already looks like Amazon’s solution comes with more advanced features from day one.

Let us know what you think of Amazon Rekognition and how you’re going to use it in production. Also, stay tuned for more exciting announcements during today’s second Keynote at AWS re:Invent 2016.

 

Written by

Alex Casalboni

Alex is a Software Engineer with a great passion for music and web technologies. He's experienced in web development and software design, with a particular focus on frontend and UX.

Related Posts

Joe Nemer
Joe Nemer
— April 1, 2019

AWS EC2 Instance Types Explained

Amazon Web Services’ resource offerings are constantly changing, and staying on top of their evolution can be a challenge. Elastic Cloud Compute (EC2) instances are one of their core resource offerings, and they form the backbone of most cloud deployments. EC2 instances provide you with...

Read more
  • AWS
  • EC2
Sanket Dangi
— February 11, 2019

WaitCondition Controls the Pace of AWS CloudFormation Templates

AWS's WaitCondition can be used with CloudFormation templates to ensure required resources are running.As you may already be aware, AWS CloudFormation is used for infrastructure automation by allowing you to write JSON templates to automatically install, configure, and bootstrap your ...

Read more
  • AWS
  • formation
Andrew Larkin
— January 24, 2019

The 9 AWS Certifications: Which is Right for You and Your Team?

As companies increasingly shift workloads to the public cloud, cloud computing has moved from a nice-to-have to a core competency in the enterprise. This shift requires a new set of skills to design, deploy, and manage applications in cloud computing.As the market leader and most ma...

Read more
  • AWS
  • AWS certifications
Andrew Larkin
— November 28, 2018

Two New EC2 Instance Types Announced at AWS re:Invent 2018 – Monday Night Live

The announcements at re:Invent just keep on coming! Let’s look at what benefits these two new EC2 instance types offer and how these two new instances could be of benefit to you. If you're not too familiar with Amazon EC2, you might want to familiarize yourself by creating your first Am...

Read more
  • AWS
  • EC2
  • re:Invent 2018
Guy Hummel
— November 21, 2018

Google Cloud Certification: Preparation and Prerequisites

Google Cloud Platform (GCP) has evolved from being a niche player to a serious competitor to Amazon Web Services and Microsoft Azure. In 2018, research firm Gartner placed Google in the Leaders quadrant in its Magic Quadrant for Cloud Infrastructure as a Service for the first time. In t...

Read more
  • AWS
  • Azure
  • Google Cloud
Khash Nakhostin
Khash Nakhostin
— November 13, 2018

Understanding AWS VPC Egress Filtering Methods

In order to understand AWS VPC egress filtering methods, you first need to understand that security on AWS is governed by a shared responsibility model where both vendor and subscriber have various operational responsibilities. AWS assumes responsibility for the underlying infrastructur...

Read more
  • Aviatrix
  • AWS
  • VPC
Jeremy Cook
— November 10, 2018

S3 FTP: Build a Reliable and Inexpensive FTP Server Using Amazon’s S3

Is it possible to create an S3 FTP file backup/transfer solution, minimizing associated file storage and capacity planning administration headache?FTP (File Transfer Protocol) is a fast and convenient way to transfer large files over the Internet. You might, at some point, have conf...

Read more
  • Amazon S3
  • AWS
Guy Hummel
— October 18, 2018

Microservices Architecture: Advantages and Drawbacks

Microservices are a way of breaking large software projects into loosely coupled modules, which communicate with each other through simple Application Programming Interfaces (APIs).Microservices have become increasingly popular over the past few years. The modular architectural style,...

Read more
  • AWS
  • Microservices
Stuart Scott
— October 2, 2018

What Are Best Practices for Tagging AWS Resources?

There are many use cases for tags, but what are the best practices for tagging AWS resources? In order for your organization to effectively manage resources (and your monthly AWS bill), you need to implement and adopt a thoughtful tagging strategy that makes sense for your business. The...

Read more
  • AWS
  • cost optimization
Stuart Scott
— September 26, 2018

How to Optimize Amazon S3 Performance

Amazon S3 is the most common storage options for many organizations, being object storage it is used for a wide variety of data types, from the smallest objects to huge datasets. All in all, Amazon S3 is a great service to store a wide scope of data types in a highly available and resil...

Read more
  • Amazon S3
  • AWS
Cloud Academy Team
— September 18, 2018

How to Optimize Cloud Costs with Spot Instances: New on Cloud Academy

One of the main promises of cloud computing is access to nearly endless capacity. However, it doesn’t come cheap. With the introduction of Spot Instances for Amazon Web Services’ Elastic Compute Cloud (AWS EC2) in 2009, spot instances have been a way for major cloud providers to sell sp...

Read more
  • AWS
  • Azure
  • Google Cloud
  • SpotInst
Guy Hummel and Jeremy Cook
— August 23, 2018

What are the Benefits of Machine Learning in the Cloud?

A Comparison of Machine Learning Services on AWS, Azure, and Google CloudArtificial intelligence and machine learning are steadily making their way into enterprise applications in areas such as customer support, fraud detection, and business intelligence. There is every reason to beli...

Read more
  • AWS
  • Azure
  • Google Cloud
  • Machine Learning