Skip to main content

AWS re:Invent 2017 Day 3. Amazon Rekognition Video Enables Object and Face Recognition

From the 22 new features released by AWS today at re:invent 2017, Amazon Rekognition Video stood out to me as the interesting “quiet achiever” I want to tell you about.
Amazon Rekognition Video brings object and facial recognition to live and on-demand video content. With this innovative new service you can moderate and even replace parts of video content.
I know what you’re thinking. Does this mean we could replace an annoying object / person / presenter in a video with something more interesting? It’s all new, but potentially, yes. The Amazon Rekognition Video description lists object or person tracking as a feature of this new service. Imagine if we could replace an object / person / presenter with something ELSE in EVERY video we saw? Now THAT is getting interesting!
Let’s open the box and take a look.

Amazon Rekognition Video

Amazon Rekognition is based on a deep learning neural network model. The Amazon Rekognition Image processing service was released at re:invent 2016. According to Andy Jassy in today’s presentation, adoption of the Amazon Rekognition service has been high in the AWS customer base, and the feedback highlighted an interest in having Rekognition features available for video content.
Amazon Rekognition Video is the latest addition to the Amazon Rekognition service, and it’s generally available as of today.
Let’s start exploring what we can do with it. Opening the service in the AWS console, my first observation was that I needed to change regions! Amazon Rekognition Video is currently only available in the US East, US West, and EU regions.
On arrival in the console we get an intro to the Amazon Rekognition engine. The Rekognition service identifies objects in images and presents a description of each image as metadata in JSON format. We get the label object, the co-ordinates, the timestamp, and an “accuracy” score for each label returned as a percentage. A label could be an object, a landmark, or even a face / facial gesture. (More on that aspect of Amazon Rekognition Video soon).
First, let’s do a quick hands-on recap of what Amazon Rekognition does and how it does it. In the first image I sent to Rekognition (below), Amazon Rekognition recognizes me, the “human” /  “male” and the “dog” / ” border collie”.
Indy the border collie is half obscured in this difficult scene, which was no problem for the Amazon Rekognition service.

Rekognition did extremely well to recognize all of the objects in this difficult photo. I was very impressed. So, I threw it another rather difficult challenge: double llamas.
Rekognition just calmy recognizes “Alpaca” and “Llama” in this confusing shot. Wow. I am getting excited about this!

Just one more small test. Let’s see how Amazon Rekognition handles the “activity” label of the “dog” (Indy – my Border Collie) “swimming” in the blue-green New Zealand “ocean.”

Ok, it didn’t. Rekognition returned no objects from this image! Ok, maybe that was too tough. Rekognition has worked quickly and seamlessly with every other image, so time to see how we can use Amazon Rekognition Video to do something really meaningful.

Rekognition Video challenge: Label Detection

On to the next challenge. I have a lot of videos of Indy, my Border Collie, swimming in the sea. She is an incredible swimmer, which is rare for a Border Collie. When Indy swims, she stands around on the pier for a long time before jumping in. As a result, it can be difficult to find the point in the video when she does jump in, which is, of course, the part people want to see.
I want to be able to identify and label the point where she hits the water. If Rekognition gets this right (understanding labels and the API), then we move on to celebrities and replacing people!
Time to access Rekognition Video via the console and then the CLI. I’ll share a few things I learned before getting started.
First: You need to have your video content in an S3 bucket within one of the supported regions.
Second: Amazon Rekognition Video processing is feature rich. So, let’s get into the full power of this amazing beast one step at a time. We’ll start by understanding Rekognition labels, then we can process a video and request the labels Rekognition returns to us. Next, we will use that information to execute an event. In our next lesson, we will explore facial recognition and tracking!
Most of your interactions will be through the AWS Command Line Interface (CLI). The AWS console can give you a basic visual representation of your outputs, which can be really helpful, so let’s run this first.
I uploaded a series of videos and asked Rekognition to process them.


Rekogniton quickly summarizes the events, labels, and sentiment from the videos using its built-in processing engine. The process is fast, and I can immediately see the tags recognized / generated in the left-hand panel.
To see what else we can do with the API, we’ll interact with it using the CLI. There is always a little bit of set up required before using the API.
Here are the steps I try to remember when starting an Amazon Rekognition Video project:

  • Create or have access to an S3 bucket in a supported region (currently the list is limited to the US East, US West, and EU regions, but that will change)
  • Upload a video file in a supported format (most formats are supported; a short mp4 is good)
  • Create an IAM role and give Rekognition Video access to multiple SNS topics. Copy the Amazon Resource Name (ARN)
  • Create an Simple Notification Service topic. Add AmazonRekognition as a prefix to the topic
  • Copy the topic ARN
  • Create an SQS standard queue. Copy the queue ARN
  • Subscribe the SQS queue to your SNS topic

From the console, we can call Rekognition and start processing our video.
aws rekognition start-label-detection –video S3Object={Bucket=”bucketname”,Name=”indy_swimming.mp4″} \
–endpoint-url Endpoint \
–notification-channel “SNSTopicArn=TopicARN,RoleArn=RoleARN” \
–region us-east-1 \
–profile RekognitionUserWeCreated
To start the detection of labels in a video, we call StartLabelDetection.
{
“Video”: {
“S3Object”: {
“Bucket”: “bucketname”,
“Name”: “indy_swimming.mp4”
}
},
“ClientRequestToken”: “LabelDetectionToken”,
“MinConfidence”: 40,
“NotificationChannel”: {
“SNSTopicArn”: “arn:aws:sns:us-east-1:nnnnnnnnnn:topic”,
“RoleArn”: “arn:aws:iam::nnnnnnnnnn:role/roleopic”
},
“JobTag”: “DetectingAllLabels”
}}
}
StartLabelDetection returns a job identifier (JobId)
{“JobId”:”270c1cc5e1d0ea2fbc59d97cb69a72a5495da75851976b14a1784ca90fc180e3″}
When the label detection operation has finished, Rekognition publishes a completion status to an Amazon Simple Notification Service (SNS) topic. The Amazon SNS topic must be in the same AWS region as the Rekognition Video endpoint that you are calling. The NotificationChannel also needs an ARN for a role that allows Rekognition Video to publish to the Amazon SNS topic.
{
“JobId”: “270c1cc5e1d0ea2fbc59d97cb69a72a5495da75851976b14a1nnnnnnnnnnnn”,
“Status”: “SUCCEEDED”,
“API”: “StartLabelDetection”,
“JobTag”: “DetectingAllLabels”,
“Timestamp”: 1510865364756,
“Video”: {
“S3ObjectName”: “indy_swimming.mp4”,
“S3Bucket”: “bucketname”
}
}
We can then call the detected labels with the method GetLabelDetection.
GetLabelDetection returns an array (Labels) that contains information about the labels detected in the video. The array can be sorted either by time or by the label detected by specifying the SortBy parameter eg “NAME.” “TIMESTAMP’ is the default sort parameter.
{
“JobId”: “270c1cc5e1d0ea2fbc59d97cb69a72a5495da75851976b14a1784ca90fc180e3”,
“MaxResults”: 20,
“SortBy”: “TIMESTAMP”
}
The JSON response lists all the labels identified by GetLabelDetection. Rekognition has identified that my video has water, a ripple, a boat, a ferry, and, a dog, which is a Collie. That is incredible!  The two important ones for me are:
{“Label”:{“Confidence”:68.23069763183594,”Name”:”Collie”},”Timestamp”:200}
{“Label”:{“Confidence”:51.01799774169922,”Name”:”Ripple”},”Timestamp”:12000}
We’ll note that Rekognition did not detect swimming or jumping as activities. We do have the label “ripple,” which hopefully can help us identify when Indy jumps in the water.
Another point to keep in mind is that Rekognition only keeps the results of a video analysis operation for 24 hours. Results will be discarded after that window, so you need to write them to some type of persistent storage if you need to keep them.
Up next: In our next challenge, we will work through how to use this data to create a visual cue or move our playhead to the position just before where we record our “ripple” event.

Written by

Andrew is an AWS certified professional who is passionate about helping others learn how to use and gain benefit from AWS technologies. Andrew has worked for AWS and for AWS technology partners Ooyala and Adobe. His favorite Amazon leadership principle is "Customer Obsession" as everything AWS starts with the customer. Passions around work are cycling and surfing, and having a laugh about the lessons learnt trying to launch two daughters and a few start ups.

Related Posts

— November 26, 2018

New Amazon S3 Features Announced at re:Invent

In true AWS style, a number of new features and services were announced yesterday, the day before the official start of re:Invent.Three of these announcements were related to Amazon S3 which included: S3 Intelligent Tiering (A new storage class) Batch Operations for Object M...

Read more
  • Amazon S3
  • Amazon Web Services
  • re:Invent 2018
  • S3
— November 10, 2018

S3 FTP: Build a Reliable and Inexpensive FTP Server Using Amazon’s S3

Is it possible to create an S3 FTP file backup/transfer solution, minimizing associated file storage and capacity planning administration headache?FTP (File Transfer Protocol) is a fast and convenient way to transfer large files over the Internet. You might, at some point, have conf...

Read more
  • Amazon S3
  • AWS
— September 26, 2018

How to Optimize Amazon S3 Performance

Amazon S3 is the most common storage options for many organizations, being object storage it is used for a wide variety of data types, from the smallest objects to huge datasets. All in all, Amazon S3 is a great service to store a wide scope of data types in a highly available and resil...

Read more
  • Amazon S3
  • AWS
— February 13, 2018

Cloud Academy Sketches: Encryption in S3

Some of 2017’s largest data breaches involved unprotected Amazon Simple Storage (S3) buckets that left millions of customer data records exposed to the public. The problem wasn’t the technology, but administrators who improperly configured the security settings.For cloud teams in char...

Read more
  • Amazon S3
  • AWS
— January 3, 2018

How to Diagnose Cancer with Amazon Machine Learning

A common question in the medical field is:Is it possible to distinguish one class of samples from another, based on some set of measurements?Research investigating this and related medical questions have spurred innovation in medicine and the application of statistical methods and m...

Read more
  • Amazon S3
  • AWS
— August 10, 2017

Using Amazon Athena to query S3 data for CloudTrail logs

Who is Athena again? Athena is the Greek goddess of wisdom, craft, and war. (But at least she had a calm temperament, and only fought for a just cause!) This post is about Amazon Athena and about using Amazon Athena to query S3 data for CloudTrail logs, however, and I trust it will brin...

Read more
  • Amazon Athena
  • Amazon S3
  • AWS
  • CloudTrail
— April 7, 2016

A Crash Course in Amazon Serverless Architecture: Discover the Power of Amazon API Gateway, Lambda, CloudFront, and S3

New expanded content showing all three AWS Serverless posts in one article. This is a detailed look at the components of AWS Serverless Architecture and how anyone can make the most of it. Because of the complexity of the subject, this post has been subdivided into 3 sections, each with...

Read more
  • Amazon S3
  • AWS
— February 2, 2016

Amazon S3 Security: master S3 bucket polices and ACLs

Learn about Bucket Policies and ways of  implementing Access Control Lists (ACLs) to restrict/open your Amazon S3 buckets and objects to the Public and other AWS users.Follow along and learn ways of ensuring the public only access for your S3 Bucket Origin via a valid CloudFront reques...

Read more
  • Amazon S3
  • AWS
— September 11, 2015

Riak CS: a cloud storage solution compatible with Amazon S3

Riak CS is an open source cloud storage technology compatible with Amazon S3 and Openstack Swift. Discover why more and more companies are using it.Riak CS may not be the best known cloud storage technology right now, but it's definitely worthy of our attention. This post isn't meant ...

Read more
  • Amazon S3
  • AWS
— June 10, 2015

VPC Endpoint for Amazon S3: simple connectivity from AWS

Lets discuss VPC Endpoint's value, common use cases, and how to get it up and running with the AWS CLI.Last month Amazon Web Services introduced VPC Endpoint for Amazon S3. In this article I am going to explain exactly what this means, how it will change - and improve - the way AWS re...

Read more
  • Amazon S3
  • AWS
— February 17, 2015

Amazon S3 vs Amazon Glacier: A Simple Backup Strategy In The Cloud

Amazon S3 vs Amazon Glacier: which AWS storage tool should you use?When you set out to design your first AWS (Amazon Web Services) hosted application, you will need to consider the possibility of data loss.While you may have designed a highly resilient and durable solution, this w...

Read more
  • Amazon S3
  • AWS
— September 9, 2014

New lab: Create your first Amazon S3 bucket

One of the most amazing things I see here in CloudAcademy is the number of feedback we get from our members, who send lots of emails daily to tell us how good CloudAcademy.com is for them to learn Cloud, what we should improve, and what new content they would like to see soon. In fact, ...

Read more
  • Amazon S3
  • AWS