AWS AMI Virtualization Types: HVM vs PV (Paravirtual VS Hardware VM)

Amazon Machine Images (AWS AMI) offers two types of virtualization: Paravirtual (PV) and Hardware Virtual Machine (HVM). Each solution offers its own advantages.

When we’re using AWS, it’s easy for someone — almost without thinking —  to choose which AMI flavor seems best when spinning up a new EC2 instance. Maybe you’re just doing some quick testing, or maybe you know all you need and your AMI has a relatively recent version of Microsoft SQL Server on it.

However, when you dig a little deeper, you’ll see that the AMIs offer a choice of virtualization type: PV and HVM. What is this and how much do you really need to be concerned with it?

In this article, we’ll cover the basics about AWS AMI Paravirtual and Hardware Virtual Machine. To dive even deeper and learn how to create a customized OS image through an Amazon Machine Image (AMI), check out Cloud Academy’s Create an EBS-Backed Linux AMI Lab. During this lab, you’ll setup a webserver EC2 instance starting from a Linux AMI, and then generate a new AMI.

Create an EBS-Based Linux AWS AMIAWS AMI Lab |

What’s the difference between PV and HVM?

Choosing an AWS AMI virtualization type may not seem critical or relevant at first, but I believe everyone should have at least a basic understanding of how the different virtualization options function.

How many times have you actually thought about which kind of virtualization is best suited to your needs before you select your AWS AMI? Or better: how often have you thought about it, but ignored it and just started working anyway? When you select an AWS AMI to launch an instance you will see something like this:

AWS AMI - HVM
AWS AMI - PV
What are these highlighted terms all about? I’ll explain.

The AWS AMI and the Xen hypervisor

Every AWS AMI uses the Xen hypervisor on bare metal. Xen offers two kinds of virtualization: HVM (Hardware Virtual Machine) and PV (Paravirtualization). But before we discuss these virtualization capabilities, it’s important to understand how Xen architecture works. Below is a high-level representation of Xen components:
AWS AMI - Zen
Virtual machines (also known as guests) run on top of a hypervisor. The hypervisor takes care of CPU scheduling and memory partitioning, but it is unaware of networking, external storage devices, video, or any other common I/O functions found on a computing system.

These guest VMs can be either HVM or PV.

The AWS AMI and HVM vs. PV

HVM guests are fully virtualized. It means that the VMs running on top of their hypervisors are not aware that they are sharing processing time with other clients on the same hardware. The host should have the capability to emulate underlying hardware for each of its guest machines. This virtualization type provides the ability to run an operating system directly on top of a virtual machine without any modification as if it were run on the bare-metal hardware. The advantage of this is that HVMs can use hardware extensions which provide very fast access to underlying hardware on the host system.

Paravirtualization, on the other hand, is a lighter form of virtualization. This technique is fast and provides near native speed in comparison to full virtualization. With Paravirtualization, the guest operating system requires some modification before everything can work. These modifications allow the hypervisor to export a modified version of the underlying hardware to the VMs, allowing them near-native performance. All PV machines running on a hypervisor are basically modified operating systems like Solaris or various Linux distributions.

This is in contrast to HVM, which requires no modifications to the guest OS, and the host OS is completely unaware of the virtualization. This may add to the performance penalty because it places an extra burden on the hypervisor.

Let’s extend this discussion to the AWS AMI. AWS supports Hardware Virtual Machine (HVM) for Windows instances as well as Paravirtualization (PV) for Linux instances. Years ago, AWS would encourage users to use Paravirtualized guest VMs, because they were then considered more efficient than HVM. We’ll talk later about how this has changed, but it’s useful to know the history and the strengths of each type of virtualization.

With that in mind, it’s helpful to take note that there is one major disadvantage with Paravirtualization: You need a region-specific kernel object for each Linux instance. Consider a scenario where you want to recover or build an instance in some other AWS region. In that scenario, you need to find a matching kernel — which can be tedious and complex. Nevertheless, I can’t say that this is the only reason that Amazon now recommends using the HVM virtualization versions of the latest generation of their instances: There are a number of additional recent enhancements in HVM virtualization which have improved its performance greatly.

Here are some key factors that contributed to Hardware Virtual Machine’s closing the performance gap with Paravirtualization:

  • Improvements to the Xen Hypervisor.
  • Newer generation CPUs with new instruction sets.
  • EC2 driver improvements.
  • Overall infrastructure changes in AWS.

Consider upgrading if you are using an older instance type.

PV vs HVM choices used to require more research

This table shows which AWS AMI (Amazon Linux) is recommended for each Amazon EC2 instance type:
AWS AMI - Types
Amazon currently recommends users to choose HVM instead of PV. Ignoring their advice can have very real consequences. For example, in the AWS Frankfurt region, if you try to select an AWS AMI (Amazon Linux) using PV, you will be greatly restricted in your choice of instance types:
AWS AMI - PVAWS AMI - PV
As you can see, the cheapest instance type you can select here is m3.medium. But going with the Amazon Linux AMI on HVM, the cheapest instance type available to you is t2.micro.
AWS AMI - HVM
As time has shown, it now works this way in all AWS regions, and this should serve to make you aware about the relevance of virtualization type which we ignore at our own peril.

The PV vs HVM debate is much clearer today

As we’ve seen above, the main difference between PV and HVM AMIs is the way in which they relate to the underlying hardware. However, with the current (as of July 2019) EC2 offerings, HVMs are no longer at a performance disadvantage compared to PV. HVMs can run PV drivers and the correlating EC2 instances have improved such that HVM-based AMIs are faster than PV-based AMIs.

HVM AMIs rule the roost for Windows-based AMIs.

One distinction though: HVM AMIs rule the roost for Windows-based AMIs. PV AMIs are still available for Linux but the same debate carries through — all the newest Linux EC2 instances offer types that run HVM and can be faster, due to specialized hardware access such as enhanced network and GPU access.

Conclusion

Traditionally, Paravirtualized guests performed better with storage and network operations than HVM guests, because they could avoid the overhead of emulating network and disk hardware. This is no longer the case with HVM guests. They must translate these instructions (I/O) every time to effectively emulated hardware. Things have also improved since the introduction of PV drivers for HVM guest. HVM guests will also experience performance advantages in storage and network I/O.

Because Amazon has changed their approach toward the AWS AMI, we have no choice but to address this topic. A few years ago we saw the writing on the wall: It looked like HVM types would completely replace PV types. While that has not completely and utterly happened, it has — in effect — since HVM types are most prevalent among cheap and new instances. So that is why it’s critical that you make informed decisions today.

If you have experience with either AWS AMI instance, share your thoughts in the comments below.

Avatar

Written by

Vineet Badola

Working as a cloud professional for last 6 years in various organizations, I have experience in three of the most popular cloud platforms, AWS IaaS, Microsoft Azure and Pivotal Cloud Foundry PaaS platform. Having around 10 years of IT experience in various roles and I take great interest in learning and sharing my knowledge on newer technologies. Wore many hats as developer, lead, architect in cloud technologies implementation. During Leisure time I enjoy good soothing music, playing TT and sweating out in Gym. I believe sharing knowledge is my way to make this world a better place.

Related Posts

Avatar
Jeremy Cook
— September 17, 2019

Cloud Migration Risks & Benefits

If you’re like most businesses, you already have at least one workload running in the cloud. However, that doesn’t mean that cloud migration is right for everyone. While cloud environments are generally scalable, reliable, and highly available, those won’t be the only considerations dri...

Read more
  • AWS
  • Azure
  • Cloud Migration
Joe Nemer
Joe Nemer
— September 12, 2019

Real-Time Application Monitoring with Amazon Kinesis

Amazon Kinesis is a real-time data streaming service that makes it easy to collect, process, and analyze data so you can get quick insights and react as fast as possible to new information.  With Amazon Kinesis you can ingest real-time data such as application logs, website clickstre...

Read more
  • amazon kinesis
  • AWS
  • Stream Analytics
  • Streaming data
Joe Nemer
Joe Nemer
— September 6, 2019

Google Cloud Functions vs. AWS Lambda: The Fight for Serverless Cloud Domination

Serverless computing: What is it and why is it important? A quick background The general concept of serverless computing was introduced to the market by Amazon Web Services (AWS) around 2014 with the release of AWS Lambda. As we know, cloud computing has made it possible for users to ...

Read more
  • AWS
  • Azure
  • Google Cloud Platform
Joe Nemer
Joe Nemer
— September 3, 2019

Google Vision vs. Amazon Rekognition: A Vendor-Neutral Comparison

Google Cloud Vision and Amazon Rekognition offer a broad spectrum of solutions, some of which are comparable in terms of functional details, quality, performance, and costs. This post is a fact-based comparative analysis on Google Vision vs. Amazon Rekognition and will focus on the tech...

Read more
  • Amazon Rekognition
  • AWS
  • Google Cloud Platform
  • Google Vision
Alisha Reyes
Alisha Reyes
— August 30, 2019

New on Cloud Academy: CISSP, AWS, Azure, & DevOps Labs, Python for Beginners, and more…

As Hurricane Dorian intensifies, it looks like Floridians across the entire state might have to hunker down for another big one. If you've gone through a hurricane, you know that preparing for one is no joke. You'll need a survival kit with plenty of water, flashlights, batteries, and n...

Read more
  • AWS
  • Azure
  • Google Cloud Platform
  • New content
  • Product Feature
  • Python programming
Joe Nemer
Joe Nemer
— August 27, 2019

Amazon Route 53: Why You Should Consider DNS Migration

What Amazon Route 53 brings to the DNS table Amazon Route 53 is a highly available and scalable Domain Name System (DNS) service offered by AWS. It is named by the TCP or UDP port 53, which is where DNS server requests are addressed. Like any DNS service, Route 53 handles domain regist...

Read more
  • Amazon
  • AWS
  • Cloud Migration
  • DNS
  • Route 53
Alisha Reyes
Alisha Reyes
— August 22, 2019

How to Unlock Complimentary Access to Cloud Academy

Are you looking to get trained or certified on AWS, Azure, Google Cloud Platform, DevOps, Cloud Security, Python, Java, or another technical skill? Then you'll want to mark your calendars for August 23, 2019. Starting Friday at 12:00 a.m. PDT (3:00 a.m. EDT), Cloud Academy is offering c...

Read more
  • AWS
  • Azure
  • cloud academy content
  • complimentary access
  • GCP
  • on the house
Avatar
Michael Sheehy
— August 19, 2019

What Exactly Is a Cloud Architect and How Do You Become One?

One of the buzzwords surrounding the cloud that I'm sure you've heard is "Cloud Architect." In this article, I will outline my understanding of what a cloud architect does and I'll analyze the skills and certifications necessary to become one. I will also list some of the types of jobs ...

Read more
  • AWS
  • Cloud Computing
Avatar
Nitheesh Poojary
— August 19, 2019

Boto: Using Python to Automate AWS Services

Boto allows you to write scripts to automate things like starting AWS EC2 instances Boto is a Python package that provides programmatic connectivity to Amazon Web Services (AWS). AWS offers a range of services for dynamically scaling servers including the core compute service, Elastic...

Read more
  • Automated AWS Services
  • AWS
  • Boto
  • Python
Avatar
Andrew Larkin
— August 13, 2019

Content Roadmap: AZ-500, ITIL 4, MS-100, Google Cloud Associate Engineer, and More

Last month, Cloud Academy joined forces with QA, the UK’s largest B2B skills provider, and it put us in an excellent position to solve a massive skills gap problem. As a result of this collaboration, you will see our training library grow with additions from QA’s massive catalog of 500+...

Read more
  • AWS
  • Azure
  • content roadmap
  • Google Cloud Platform
Avatar
Adam Hawkins
— August 9, 2019

DevSecOps: How to Secure DevOps Environments

Security has been a friction point when discussing DevOps. This stems from the assumption that DevOps teams move too fast to handle security concerns. This makes sense if Information Security (InfoSec) is separate from the DevOps value stream, or if development velocity exceeds the band...

Read more
  • AWS
  • cloud security
  • DevOps
  • DevSecOps
  • Security
Avatar
Stefano Giacone
— August 8, 2019

Test Your Cloud Knowledge on AWS, Azure, or Google Cloud Platform

Cloud skills are in demand | In today's digital era, employers are constantly seeking skilled professionals with working knowledge of AWS, Azure, and Google Cloud Platform. According to the 2019 Trends in Cloud Transformation report by 451 Research: Business and IT transformations re...

Read more
  • AWS
  • Cloud skills
  • Google Cloud
  • Microsoft Azure