Skip to main content

Building a serverless architecture for data collection with AWS Lambda

AWS Lambda is one of the best solutions for managing a data collection pipeline and for implementing a serverless architecture. In this post, we’ll discover how to build a serverless data pipeline in three simple steps using AWS Lambda Functions, Kinesis Streams, Amazon Simple Queue Services (SQS), and Amazon API Gateway!

How to build a serverless data pipeline in 3 steps

Data generated by web and mobile applications is usually stored either to a file or to a database (often a data warehouse). Because the data comes from different sources, such as the back-end server or the front-end UI, it is often very heterogeneous. Furthermore, this data must typically be synced with multiple services such as a CRM (e.g., Hubspot), an email provider (e.g., Mailchimp), or an analytics tool (e.g., Mixpanel). Moreover, this process must be backward compatible and avoid data loss. For such reasons, building and managing a custom infrastructure that is able to handle the collection of such data could be very expensive.

I would like to propose a solution based on AWS Cloud services with the goal of creating a serverless architecture. This also fits a typical use case where the data flow involves thousands or more events per minute.

The following schema summarizes the architecture that we’ll be describing:

Serverless Architecture for Data Collection Pipeline with AWS Lambda Functions and Kinesis Streams
Serverless Architecture for Data Collection Pipeline with AWS Lambda Functions and Kinesis Streams

The use case that I will be analyzing involves the collection of data from multiple sources: backend, front-end, and mobile generated events. The architecture for data collection is designed to send events to different destinations, like our data warehouse and other third-party services (e.g., Hubspot, Mixpanel, GTM, customer.io). As a result, the architecture includes several serverless AWS cloud services, creating a basic data collection flow that can be easily extended by adding further modules as needed:

  1. Amazon Kinesis Streams collects events that originate from front-end and mobile applications through an Amazon API Gateway that works as a REST endpoint. The events generated by the server are directly sent to Kinesis Streams using the Kinesis Producer Library.
  2. AWS Lambda Functions are used to manage the core logic of the pipeline. A first Lambda Function consumes the output of Kinesis Streams and then forwards events to each single custom Lambda Function, which works as a connector to a third-party service, providing additional features such as authentication and the retry strategy.
  3. Amazon SQS queues are used as a DLQ (Dead Letter Queue) for each AWS Lambda Function as a fallback in case of multiple failures in data processing.

Architecture implementation

1. Amazon Kinesis Streams: Manage events from multiple sources

Let’s analyze the architecture in detail.
The data that we need to track is generated by the back-end server, the front-end website, and the mobile application. The back-end directly sends events to Kinesis Streams using the KPL (Kinesis Producer Library). An example of server-side generated events is a user login or a file download.

On the other hand, events originated from the front-end and from mobile are sent to Kinesis Streams through an Amazon API Gateway that exposes a rest endpoint. An example of such events is a page scroll in the homepage tracked via javascript, or a button clicked in the iOS or Android app.

First of all, why Amazon Kinesis Streams? Amazon Kinesis Streams is the ideal tool if you need to collect and process large streams of data in real time. As a result, there are typical scenarios for using Amazon Kinesis Streams:

  • Managing multiple producers that push their data feeds directly into the same stream
  • Collecting real-time analytics and metrics
  • Processing application logs
  • Integrating the data collection pipeline with other AWS services (i.e. consumers) to process the events

In addition, the API Gateway can be used as the endpoint for front-end and mobile. During the configuration of Amazon Kinesis Streams, we suggest starting with a single shard and increase it only when needed.

The following python code allows you send 300 events to the configured stream. The attribute PartitionKey is a random id used to partition events among shards; in the example, we generated it using a datetime field. Finally, pay attention to payload content format: remember to always add data and name fields. You can find a ready-to-use blueprint in the AWS Lambda console.

import boto3
from time import gmtime, strftime
client = boto3.client(
    service_name="kinesis",
    region_name="us-east-1",
)
for i in xrange(300):
    print "sending event", i, "\nresponse: ",
    response = client.put_record(
        StreamName="data-collection-stream",
        Data='{"name":"event-%d","data":{"square":%d}}' % (i, i*i),
        PartitionKey=strftime("PK-%Y%m%d-%H%M%S", gmtime()),
    )
    print response

 2. Manage events routing and retry strategy with AWS Lambda Functions

AWS Lambda is a serverless cloud service by Amazon Web Services that runs your code for virtually any type of backend application. Lambdas automatically manage the underlying compute resources for you in response to events triggered from other AWS services or call it directly from the outside. Relevant AWS Lambda Functions:

  • Process a single event in real-time without managing servers
  • Are highly scalable
  • Provide a fallback strategy in case of error

With reference to the proposed architecture, an AWS Lambda Function is first directly triggered by Kinesis Streams itself. To preserve the priority, we recommend configuring the trigger with batch size equals to 1 and starting position set to trim the horizon, as shown in the following snapshot of the AWS Lambda Function console:

Trigger AWS Lambda Functions with Amazon Kinesis Streams
Trigger AWS Lambda Functions with Amazon Kinesis Streams

This AWS Lambda Function is in charge of routing the events coming from the Kinesis Stream to several destination services. For a more cost-effective solution, we recommend implementing a conditional routing based on the same event properties. For instance, based on the event name, a set of rules can be configured to decide whether to discard or to forward an event toward a certain destination.
With this purpose, I defined a set of routing rules in a JSON file stored in an S3 bucket:

[
 {
   "destination_name": "mixpanel",
   "destination_arn": "arn:aws:lambda:region:account-id:function:function-name:prod",
   "enabled_events": [
     "page_view",
     "search",
     "button_click",
     "page_scroll",
   ]
 },
 {
   "destination_name": "hubspotcrm",
   "destination_arn": "arn:aws:lambda:region:account-id:function:function-name:prod",
   "enabled_events": [
     "login",
     "logout",
     "registration",
     "page_view",
     "search",
     "email_sent",
     "email_open",
   ]
 },
 {
   "destination_name": "datawarehouse",
   "destination_arn": "arn:aws:lambda:region:account-id:function:function-name:prod",
   "enabled_events": [
     "login",
     "logout",
     "registration",
     "page_view",
     "search",
     "button_click",
     "page_scroll",
     "email_sent",
     "email_open",
   ]
 }
]

I recommend using the AWS Lambda Function environment variables to configure the name of the S3 file and bucket so that they can be updated at any time without editing the code. Each rule has a destination_arn attribute that configures where the event is to be sent if its name is included in the list of enabled_events. The AWS Lambda Function will send the event to the configured ARN (Amazon Resource Name), with each corresponding to a specific Lambda Function.

I suggest outputting events one by one to avoid data loss. In this way, the AWS Lambda Function in charge of conditional routing is sure to manage only one message at a time.

Finally, we need to implement a new AWS Lambda Function that is in charge of validating the incoming event and forwards it to each destination service (e.g., Google Analytics, Mixpanel, Hubspot, database). Such functions are asynchronously invoked by the routing Lambda (using the destination_arn).
Each AWS Lambda function implements:

  • The connector: It provides the logic to connect to the destination service (e.g., HubSpot)
  • The retry strategy: If event saving fails, it retries for a specified number of times with an exponential delay

In addition, a few suggestions that we found useful during the design and the development of the data collection architecture:

  • Invoke Lambda Functions that work as connector asynchronously.
  • Always create aliases and versions for each Function. This configuration enables you to publish a different version of your Lambda Function code depending on development, beta, and production workflow.
  • Use environment variables for configurations.
  • Create a custom IAM role for each AWS Lambda Function.
  • Detect delays in stream processing by monitoring the IteratorAge metric in the Lambda console’s monitoring tab.

 3. Configuring a Dead Letter Queue on AWS Lambda to avoid event loss

While each Lambda Function implements its own retry strategy, some events may not be successfully stored by the destination service (e.g., network problems, missing data, etc.).

Fortunately, Lambda allows you to implement a fallback strategy and, in the event of errors, you can discard the event and store it into a so-called Dead Letter Queue (DLQ) The DLQ can be either an SQS (Amazon Simple Queue Service) or an SNS (Amazon Simple Notification Service).

From advanced settings of Lambda (see the following snapshot) you can configure the AWS Lambda Function to forward payloads that were not processed to a dedicated Dead Letter Queue. In our example, we configured an SQS queue.

Configure DLQ in AWS Lambda to avoid data loss in our Serverless architecture
Configure DLQ in AWS Lambda to avoid data loss in our serverless architecture

You can recover the complete list of DLQ messages using another AWS Lambda Function that is manually triggered. Remember to set a DLQ on each Lambda Function that can fail! Then you can process all of the collected events again with a custom script, like the following:

import json
import boto3
def get_events_from_sqs(
       sqs_queue_name,
       region_name='us-west-2',
       purge_messages=False,
       backup_filename='backup.jsonl',
       visibility_timeout=60):
    """
        Create a json backup file of all events in the SQS queue with the given 'sqs_queue_name'.
        :sqs_queue_name: the name of the AWS SQS queue to be read via boto3
        :region_name: the region name of the AWS SQS queue to be read via boto3
        :purge_messages: True if messages must be deleted after reading, False otherwise
        :backup_filename: the name of the file where to store all SQS messages
        :visibility_timeout: period of time in seconds (unique consumer window)
        :return: the number of processed batch of events
    """
    forwarded = 0
    counter = 0
    sqs = boto3.resource('sqs', region_name=region_name)
    dlq = sqs.get_queue_by_name(QueueName=sqs_queue_name)
    with open(backup_filename, 'a') as filep:
        while True:
            batch_messages = dlq.receive_messages(
                MessageAttributeNames=['All'],
                MaxNumberOfMessages=10,
                WaitTimeSeconds=20,
                VisibilityTimeout=visibility_timeout,
            )
            if not batch_messages:
                break
            for msg in batch_messages:
                try:
                    line = "{}\n".format(json.dumps({
                       'attributes': msg.message_attributes,
                       'body': msg.body,
                    }))
                    print("Line: ", line)
                    filep.write(line)
                    if purge_messages:
                        print('Deleting message from the queue.')
                        msg.delete()
                    forwarded += 1
                except Exception as ex:
                    print("Error in processing message %s: %r", msg, ex)
            counter += 1
            print('Batch %d processed', counter)

Conclusions

I strongly recommend that you consider building a serverless architecture for the management of your data collection pipeline. In this post, we designed a serverless data collection pipeline using several AWS Cloud services such as AWS Lambda Functions and Amazon Kinesis Streams in order to ensure scalability and prevent data loss. The main advantage of this solution is the full control of the process and the cost, since you only pay for the compute time that you consume.

In conclusion, I would suggest a couple of very useful extensions that can be integrated into the serverless architecture:

  • Create a custom CloudWatch dashboard to verify the performance of the processing, monitor the presence of events in the DLQ, and eventually raise alerts in the case of issues.
  • Configure Kinesis Firehose and link it as the output of the Kinesis Streams module to ensure that all data is backed up on S3.
  • Implement a listener with Kinesis Analytics to discover correlations among the incoming events.
Avatar

Written by

David Santucci

Computer science engineer, passionate about machine learning and Lego Mindstorms.

Related Posts

Jeff Hyatt
Jeff Hyatt
— June 18, 2019

10 Steps for an Effective Reserved Instances Strategy

Amazon Web Services (AWS) offers three different ways to pay for EC2 Instances: On-Demand, Reserved Instances, and Spot Instances. This article will focus on effective strategies for purchasing Reserved Instances. While most of the major cloud platforms offer pre-pay and reservation dis...

Read more
  • AWS
  • EC2
Joe Nemer
Joe Nemer
— June 18, 2019

AWS Certification Practice Exam: What to Expect from Test Questions

If you’re building applications on the AWS cloud or looking to get started in cloud computing, certification is a way to build deep knowledge in key services unique to the AWS platform. AWS currently offers 11 certifications that cover major cloud roles including Solutions Architect, De...

Read more
  • AWS
  • AWS Certifications
Avatar
John Chell
— June 13, 2019

AWS Certified Solutions Architect Associate: A Study Guide

The AWS Solutions Architect - Associate Certification (or Sol Arch Associate for short) offers some clear benefits: Increases marketability to employers Provides solid credentials in a growing industry (with projected growth of as much as 70 percent in five years) Market anal...

Read more
  • AWS
  • AWS Certifications
Chris Gambino and Joe Niemiec
Chris Gambino and Joe Niemiec
— June 11, 2019

Moving Data to S3 with Apache NiFi

Moving data to the cloud is one of the cornerstones of any cloud migration. Apache NiFi is an open source tool that enables you to easily move and process data using a graphical user interface (GUI).  In this blog post, we will examine a simple way to move data to the cloud using NiFi c...

Read more
  • AWS
  • S3
Avatar
Chandan Patra
— June 11, 2019

Amazon DynamoDB: 10 Things You Should Know

Amazon DynamoDB is a managed NoSQL service with strong consistency and predictable performance that shields users from the complexities of manual setup.Whether or not you've actually used a NoSQL data store yourself, it's probably a good idea to make sure you fully understand the key ...

Read more
  • AWS
  • DynamoDB
Avatar
Andrew Larkin
— June 6, 2019

The 11 AWS Certifications: Which is Right for You and Your Team?

As companies increasingly shift workloads to the public cloud, cloud computing has moved from a nice-to-have to a core competency in the enterprise. This shift requires a new set of skills to design, deploy, and manage applications in cloud computing.As the market leader and most ma...

Read more
  • AWS
  • AWS Certifications
Sam Ghardashem
Sam Ghardashem
— May 15, 2019

Aviatrix Integration of a NextGen Firewall in AWS Transit Gateway

Learn how Aviatrix’s intelligent orchestration and control eliminates unwanted tradeoffs encountered when deploying Palo Alto Networks VM-Series Firewalls with AWS Transit Gateway.Deploying any next generation firewall in a public cloud environment is challenging, not because of the f...

Read more
  • AWS
Joe Nemer
Joe Nemer
— May 3, 2019

AWS Config Best Practices for Compliance

Use AWS Config the Right Way for Successful ComplianceIt’s well-known that AWS Config is a powerful service for monitoring all changes across your resources. As AWS Config has constantly evolved and improved over the years, it has transformed into a true powerhouse for monitoring your...

Read more
  • AWS
  • Compliance
Avatar
Francesca Vigliani
— April 30, 2019

Cloud Academy is Coming to the AWS Summits in Atlanta, London, and Chicago

Cloud Academy is a proud sponsor of the 2019 AWS Summits in Atlanta, London, and Chicago. We hope you plan to attend these free events that bring the cloud computing community together to connect, collaborate, and learn about AWS. These events are all about learning. You can learn how t...

Read more
  • AWS
  • AWS Summits
Paul Hortop
Paul Hortop
— April 2, 2019

How to Monitor Your AWS Infrastructure

The AWS cloud platform has made it easier than ever to be flexible, efficient, and cost-effective. However, monitoring your AWS infrastructure is the key to getting all of these benefits. Realizing these benefits requires that you follow AWS best practices which constantly change as AWS...

Read more
  • AWS
  • Monitoring
Joe Nemer
Joe Nemer
— April 1, 2019

AWS EC2 Instance Types Explained

Amazon Web Services’ resource offerings are constantly changing, and staying on top of their evolution can be a challenge. Elastic Cloud Compute (EC2) instances are one of their core resource offerings, and they form the backbone of most cloud deployments. EC2 instances provide you with...

Read more
  • AWS
  • EC2
Avatar
Nitheesh Poojary
— March 26, 2019

How DNS Works – the Domain Name System (Part One)

Before migrating domains to Amazon's Route53, we should first make sure we properly understand how DNS worksWhile we'll get to AWS's Route53 Domain Name System (DNS) service in the second part of this series, I thought it would be helpful to first make sure that we properly understand...

Read more
  • AWS