DevOps Principles: My Journey as a Software Engineer

I spent the last month reading The DevOps Handbook, a great book regarding DevOps principles, and how tech organizations evolved and succeeded in applying them.

As a software engineer, you may think that DevOps is a bunch of people that deploy your code on production, and who are always accountable for keeping the infrastructure up and running. But, here is the key: DevOps are principles — not people — and the principles should be embraced and adopted by the entire organization, including Operations, Product and project owners, and especially by software engineers.

Over the last three years as a software engineer, I saw our team progressively adopting DevOps principles. In this kind of journey, it’s difficult to understand the real triggers of change, but these are the crucial principles and actions that reshaped our way of doing things from my point of view.

The Cloud Academy DevOps Playbook is an ideal start point for any organization, team, or practitioner looking to transform their business by moving to a DevOps culture. The Playbook enables you to quickly absorb and get started using the fundamental practices of DevOps, AGILE, and continuous delivery/continuous integration.DevOps Playbook

Critical DevOps principles

1. Reproducible local environments

Making your local environment reproducible and portable using Docker should be the foundation of your transformation plan, and this should be the top priority. Adopting Docker and its ecosystem to build and run local environments allows software engineers to work with local environments with the same configuration reducing unpredictable conditions. At Cloud Academy, we began with taking one week to onboard and set up the local environment for a new employee and transitioned to taking less than two days. 

2. Trunk-based development

GitFlow is great for solid and mature products. But if you need to iterate frequently and deliver value as fast as you can to validate your features, it probably is not the best approach. Trunk-based development encourages small batches and short-lived feature branches to reduce the release life cycle. If it fits well, it can drastically increase the number of deployments per day and reduce the number of changes per deployment.

By relying on frequent releases and fast pipelines, software engineers are more likely to start introducing smaller changes. This will help improve peer review readability and reduce deployment unpredictability.

3. Decouple deployments from releases

This can be achieved by introducing a feature toggle service that allows dark launching features to release safely, hiding them completely to the customers. Feature toggles let you enable a feature based on multiple conditions, such as environment, user base segmentation, etc. In this way, a feature can be released in production, turned on only for internal users, and can be evaluated safely without affecting the entire user base.

By adopting feature toggling, software engineers are able to deploy as soon as they are confident in their features and have more time for testing and monitoring — this will also significantly reduce uncertainties before the release. Decoupling deployment from releases also lets software engineers be more focused on the development and less on the planning of releases together with stakeholders.

4. Involve software engineers in the on-call rotation

I know, you are probably thinking, “I won’t be responsible for servers, databases, and other architectural stuff, I’m a software engineer!” But here is the key: Empower software engineers to deploy autonomously with trunk-based development and their features. It’s great to speed up deployments but it is also an act of trust. Software engineers are more likely to keep the attention of deployment aspects if they are responsible and accountable for that.

Involving software engineers in the on-call rotation is highly beneficial to raise awareness of the consequences of their technical choices and share the pain with Ops engineers at 3 a.m. More conscious software engineers will be witnesses and ambassadors in their team to prevent incidents and bad technical choices.

5. Implement just culture and blameless postmortems

Complex systems are difficult to fully understand and change safely. Failures and incidents will always happen but, how the organization will respond to them is the essence of its culture. Blaming people as soon as an incident occurs and being brutal against failures will lead to fear and issues hidden to avoid consequences.

Embrace failures and learn from them — it’s the foundation for the growth of an organization in any department. When a team applies a shared responsibility for problems and mistakes are seen as opportunities for growth, everyone can learn to prevent future failures without being afraid for every critical task that is asked to perform.

Blameless postmortems are a great tool to implement just culture. After every important incident, it’s important to have a safe place to analyze the mistake by focusing on the timeline, failures, and mistakes without blaming individuals for their actions. Instead, try to identify why that mistake was likely to happen in the first place.

People involved are encouraged to share their experiences and thoughts safely and propose possible countermeasures based on the analysis made. The outcomes will be tracked and implemented to be sure that the incident produced positive learning and improvements have been introduced to prevent it from happening again. After every postmortem, the incident documentation should be shared and accessible as widely as possible to make the local learnings global. 

6. Provide self-service access to telemetry

A data-driven approach is how Ops engineers work every day collecting and analyzing metrics to improve the infrastructure, but it’s also highly adopted in other teams. Collecting technical data historically wasn’t a big deal for organizations. You can produce tons of system and application logs and other metrics, the real challenge is aggregate and make these metrics and numbers available to everyone.

As soon as you start creating charts and dashboards and perform analysis on those representations, you should make it available to everyone inside the department or even in the entire organization.  At Cloud Academy, we installed monitors in the entire office with product and engineering metrics, so everyone can see the average response time, CPU utilization, requests count, etc. In this way, our infrastructure health and performance are not an Ops prerogative, but every software engineer can read data and see if something is happening.

Summary

DevOps must be guided and supported by organizational changes. Merely applying technical actions could work in a short period of time and bust a few processes, but eventually, it will bump into the organizational rigidity. The best results come from Ops and Devs working together, sharing knowledge, and supporting each other.

Luca Casartelli

Written by

Luca Casartelli

Luca is a Full Stack Engineer and Hands-On Labs team member at Cloud Academy. He is passionate about AWS, Google Cloud and everything about cloud technologies. When he’s not behind a computer, hiking, climbing and kayaking are his favorite activities, he is constantly looking for new adventures.


Related Posts

Alisha Reyes
Alisha Reyes
— August 5, 2020

New Content: Alibaba, Azure AZ-303 and AZ-304, Site Reliability Engineering (SRE) Foundation, Python 3 Programming, 16 Hands-on Labs, and Much More

This month our Content Team did an amazing job at publishing and updating a ton of new content. Not only did our experts release the brand new AZ-303 and AZ-304 Certification Learning Paths, but they also created 16 new hands-on labs — and so much more! New content on Cloud Academy At...

Read more
  • AWS
  • Azure
  • DevOps
  • Google Cloud Platform
  • Machine Learning
  • programming
Alisha Reyes
Alisha Reyes
— July 2, 2020

New Content: AWS, Azure, Typescript, Java, Docker, 13 New Labs, and Much More

This month, our Content Team released a whopping 13 new labs in real cloud environments! If you haven't tried out our labs, you might not understand why we think that number is so impressive. Our labs are not “simulated” experiences — they are real cloud environments using accounts on A...

Read more
  • AWS
  • Azure
  • DevOps
  • Google Cloud Platform
  • Machine Learning
  • programming
Alisha Reyes
Alisha Reyes
— June 11, 2020

New Content: AZ-500 and AZ-400 Updates, 3 Google Professional Exam Preps, Practical ML Learning Path, C# Programming, and More

This month, our Content Team released tons of new content and labs in real cloud environments. Not only that, but we introduced our very first highly interactive "Office Hours" webinar. This webinar, Acing the AWS Solutions Architect Associate Certification, started with a quick overvie...

Read more
  • AWS
  • Azure
  • DevOps
  • Google Cloud Platform
  • Machine Learning
  • programming
Luca Casartelli
Luca Casartelli
— June 1, 2020

DevOps: Why Is It Important to Decouple Deployment From Release?

Deployment and release In enterprise organizations, releases are the final step of a long process that, historically, could take months — or even worse — years. Small companies and startups aren’t immune to this. Minimum viable product (MVP) over MVP and fast iterations could lead to t...

Read more
  • decoupling
  • Deployment
  • DevOps
  • engineering
  • Release
Michael Dehoyos
Michael Dehoyos
— May 13, 2020

Linux and DevOps: The Most Suitable Distribution

Modern Linux and DevOps have much in common from a philosophy perspective. Both are focused on functionality, scalability, as well as on the constant possibility of growth and improvement. While Windows may still be the most widely used operating system, and by extension the most common...

Read more
  • DevOps
  • Linux
Avatar
Logan Rakai
— April 7, 2020

How to Effectively Use Azure DevOps

Azure DevOps is a suite of services that collaborate on software development following DevOps principles. The services in Azure DevOps are: Azure Repos for hosting Git repositories for source control of your code Azure Boards for planning and tracking your work using proven agil...

Read more
  • Azure
  • DevOps
Simran Arora
Simran Arora
— October 29, 2019

Docker vs. Virtual Machines: Differences You Should Know

What are the differences between Docker and virtual machines? In this article, we'll compare the differences and provide our insights to help you decide between the two. Before we get started discussing Docker vs. Virtual Machines comparisons, let us first explain the basics.  What is ...

Read more
  • Containers
  • DevOps
  • Docker
  • virtual machines
Avatar
Adam Hawkins
— October 24, 2019

DevOps: From Continuous Delivery to Continuous Experimentation

Imagine this scenario. Your team built a continuous delivery pipeline. Team members deploy multiple times a day. Telemetry warns the team about production issues before they become outages. Automated tests ensure known regressions don't enter production. Team velocity is consistent and ...

Read more
  • continuous delivery
  • continuous experimentation
  • DevOps
Avatar
Adam Hawkins
— September 13, 2019

How Google, HP, and Etsy Succeed with DevOps

DevOps is currently well developed, and there are many examples of companies adopting it to improve their existing practices and explore new frontiers. In this article, we'll take a look at case studies and use cases from Google, HP, and Etsy. These companies are having success with Dev...

Read more
  • Continuous Learning
  • DevOps
  • Velocity
Chris Gambino
Chris Gambino
— August 28, 2019

How to Accelerate Development in the Cloud

Understanding how to accelerate development in the cloud can prevent typical challenges that developers face in a traditional enterprise. While there are many benefits to switching to a cloud-first model, the most immediate one is accelerated development and testing. The road blocks tha...

Read more
  • deploy
  • deployment acceleration
  • development
  • DevOps
Avatar
Adam Hawkins
— August 9, 2019

DevSecOps: How to Secure DevOps Environments

Security has been a friction point when discussing DevOps. This stems from the assumption that DevOps teams move too fast to handle security concerns. This makes sense if Information Security (InfoSec) is separate from the DevOps value stream, or if development velocity exceeds the band...

Read more
  • AWS
  • cloud security
  • DevOps
  • DevSecOps
  • Security
Valery Calderón Briz
Valery Calderón Briz
— August 8, 2019

Understanding Python Datetime Handling

Communicating dates and times with another person is pretty simple... right? “See you at 6 o’clock on Monday” sounds understandable. But was it a.m. or p.m.? And was your friend in the same time zone as you when you said that? When we need to use and store dates and times on Pytho...

Read more
  • DevOps
  • Python
  • Python datetime
  • Unix timestamp