How to Deploy Apache Storm on AWS with Storm-Deploy

The growing pressures of dealing with data at massive scale require purpose-built solutions. Meet Apache Storm and Apache Kafka.

In our hyper-connected world, countless sources generate real-time information 24 hours per day. Rich streams of data pour in from logs, Twitter trends, financial transactions, factory floors, click streams, and much more, and developing the ability to properly handle such volumes of high-velocity and time-sensitive data demands special attention. Apache Storm and Kafka can process very high volumes of real-time data in a distributed environment with a fault-tolerant manner.

Who Uses Storm and Kafka – And Why You Should Care

Both Storm and Kafka are top-level Apache projects currently used by various big data and cloud vendors. While Apache Storm offers highly scalable stream processing, Kafka handles messages at scale. In this post, we’ll see how both technologies work seamlessly together to form the bedrock of your real-time data analysis pipeline. You’re going to learn the basics of Apache Storm how to quickly install it in the AWS cloud environment.

A Gentle Introduction to the Apache Storm Project

By design, Apache Storm is very similar to any other distributed computing framework like Hadoop. However, while Hadoop is used for batch or archival data processing, Storm provides a framework for streaming data processing. Here are the components of a Storm cluster:
Apache Storm - nodes

(Storm cluster components)

Nimbus Node

The Nimbus Service runs on the master node (Like Job Tracker in Hadoop). The task of Nimbus is to distribute code around the cluster, assign tasks to servers, and monitor for cluster failures.

ZooKeeper Nodes

Nimbus relies on the Apache ZooKeeper service to monitor message processing tasks. The worker nodes update their task status in Apache ZooKeeper.

Supervisor Nodes

The worker nodes that do the actual processing run a daemon called Supervisor. Supervisor receives and manages worker processes to complete the tasks assigned by Nimbus.

There are a few more Apache Storm-related terms with which we should be familiar before we actually get started:

  • Topology: The workflow or the computation job graph is called topology. Much like MapReduce jobs in Hadoop, Apache Storm uses topologies. Each node in a topology has specific tasks, and the link between nodes draws the graph of how computational jobs flow from source to final output.
  • Tuple. A unit of data.
  • Streams. Unbounded sequences of tuples. Streams are raw information sources that are processed by Spouts and Bolts to generate specific output. For example, a Twitter Stream could be processed by Spouts and Bolts to generate top trending topics.
  • Spouts. A Spout is the source of a stream. In our earlier example, a spout is connected to a Twitter API to capture a stream of tweets. Alternatively, a Spout can be connected to a messaging system to read incoming messages and pass them forward to be processed by Bolts.
  • Bolts. Bolts consume input from Spouts and produce outputs or input for another Bolt. Bolts are the workers in the Storm topology, containing the smallest units of processing logic in a topology. Bolts run functions, filter, aggregate or join data, filter tuples and talk to data stores like databases.
Apache Storm - topology

(Storm topology)

Manually Deploying Apache Storm on AWS

Setting up Apache Storm in AWS (or on any virtual computing platform) should be as easy as downloading and configuring Storm and a ZooKeeper cluster. The Apache Storm documentation provides excellent guidance. In this blog post, however, we’re going to focus on storm-deploy – an easy to use tool that automates the deployment process.

Deploying Apache Storm on AWS using Storm-Deploy

Deploying with storm-deploy is really easy. Storm-deploy is a github project developed by Nathan Martz, the creator of Apache Storm. Storm-deploy automates both provisioning and deployment. In addition, it installs the Ganglia interface for monitoring disk, CPU, and network usage. I will assume that you already have an AWS account with privileges for AWS EC2 and S3.
You will need to install a Java version greater than jdk-1.6 from your workstation. Storm-deploy is built on top of jclouds and pallet. Apache jclouds is an open-source, multi-cloud toolkit for the Java platform that lets you create applications that are portable across clouds. Similarly, Pallet is used to provision and maintain servers on cloud and virtual machine infrastructure, by providing a consistently configured running image across a range of clouds. It is designed for use from the Clojure REPL (Read-Eval-Print Loop), from Clojure code, and from the command line. I simply followed the storm-deploy github project documentation. The commands are universal.
Now let’s see how all this is really done.

Step-1: Generate password-less key pairs:

ssh-keygen -t rsa

Step-2:  Install leningen-2. Leiningen is used for automating Clojure project tasks such as project creation and dependency downloads. All you will need to do here is to download the script:


Step-3: Place the script it on your path, say /usr/local/bin, and make it executable.

chmod +x /usr/local/bin/lein

 Step-4:  Clone storm-deploy using git.

git clone

Step-5: Download all dependencies by running:.

lein deps

Step-6: Create a ~/.pallet/config.clj file in your home directory and configure it with the credentials and details necessary to launch and configure instances on AWS.

   :default {
             :blobstore-provider "aws-s3"
             :provider "aws-ec2"
             :environment {:user {:username "storm"  ; this must be "storm"
                                  :private-key-path "$YOUR_PRIVATE_KEY_PATH$"
                                  :public-key-path "$YOUR_PUBLIC_KEY_PATH$"}
                           :aws-user-id "$YOUR_USER_ID$"}
             :identity "$YOUR_AWS_ACCESS_KEY$"
             :credential "$YOUR_AWS_ACCESS_KEY_SECRET$"
             :jclouds.regions "$YOUR_AWS_REGION$"

The parameters are as follows:

  • PRIVATE_KEY_PATH: Path to private rsa key, e.g. ~/.ssh/id_rsa.
  • PUBLIC_KEY_PATH: Path to public rsa key, e.g. ~/.ssh/ For Linux, you should have a null passphrase on the keys.
  • AWS_ACCOUNT_ID: Can be found on the AWS site, under Security Credentials and Account Identifiers. The ID uses the format XXXX-XXXX-XXXX.
  • AWS_ACCESS_KEY: Your AWS Access Key.
  • AWS_ACCESS_KEY_SECRET: Your AWS Access Secret Key. This can be downloaded from the AWS IAM dashboard.
  • AWS_REGION: The region in which the instances will be launched.

Step-7: There are two very important configurable files. Here the path is for my set up: /opt/chandandata/storm-cluster/conf/clusters.yaml. The first file, clusters.yaml, looks like this:

nimbus.image: "us-east-1/ami-d726abbe"         #64-bit ubuntu
nimbus.hardware: "m1.large"
supervisor.count: 2
supervisor.image: "us-east-1/ami-d726abbe"         #64-bit ubuntu on eu-east-1
supervisor.hardware: "m1.large" 1.60
zookeeper.count: 1
zookeeper.image: "us-east-1/ami-d726abbe"         #64-bit ubuntu
zookeeper.hardware: "m1.large"

All of the properties are self-explanatory. We have set the cluster to lunch instances in us-east-1 with an AMI ID:  ami-d726abbe and an instance size of m1.large. (This might be an odd configuration file. It is normally better to use m3 or m4 series instances). You can configure the hardware and images and select a spot pricing maximum – if that’s what you want.
Step-8: The other file, storm.yaml, is where you can set storm-specific configurations.
Step-9:  Launch the cluster:

lein deploy-storm --start --name cluster-name [--branch {branch}] [--commit {commit tag-or-sha1}]
  • The –name parameter names your cluster so that you can attach to it or stop it later. If you omit –name, it will default to “dev”. The name must be in lower-case.
  • The –branch parameter indicates which branch of Storm to install. If you omit –branch, it will install Storm from the master branch.
  • The —commit parameter allows a release tag or commit SHA1 to be passed. If you omit –commit you will get the latest commit from the branch you are using.
  • Example: lein deploy-storm –start –name cp-cluster –branch master –commit 0.9.1
  • This will also install with the latest version:
lein deploy-storm --start --name cp-cluster
  • The deploy sets up Nimbus, the Supervisors, and ZooKeeper launches the Storm UI on port 8080 on Nimbus and launches a DRPC server on port 3772 on Nimbus.
  • In case of errors, log into the instances with ssh storm@<IP_OF_MACHINE>, and check the logs in ~/storm/logs.

This will run the cluster with appropriate settings. Before submitting an actual storm job, you should know about just a few additional tasks that can be performed.

Operations on an Apache Storm Cluster

  • To attach to an Apache Storm cluster, run the following:
lein deploy-storm --attach --name cp-cluster

Attaching to a cluster configures your storm client (which is used to start and stop topologies) to talk to that particular cluster as well as giving your workstation authorization to view the Storm UI on port 8080 on Nimbus. It writes the location of Nimbus in ~/.storm/storm.yaml so that the storm client knows which cluster to talk to, and authorizes your workstation to access the Nimbus daemon’s Thrift port (which is used for submitting topologies), and to access Ganglia on port 80 on Nimbus.

  • To get the IP addresses of the cluster nodes, run the following:
lein deploy-storm --ips --name mycluster
  • To access the ganglia browser UI, go to: http://{nimbus ip}/ganglia/index.php
  • To stop the cluster, run:
lein deploy-storm --stop --name cp-cluster

Submit an Apache Storm Job

You can download Apache Storm here. At the time of this writing, the latest Storm version was 0.9.6. We have attached our workstation to the storm cluster so we are ready to run a Storm job.

  • Go to storm-0.9.6/bin and run:
  • Check the storm UI <NIMBUS_HOST:8080> to check the job status.
  • To kill the job, run:
storm kill TOPOLOGY_NAME

Next Steps: Harnessing the Combined Power of Storm and Kafka

In this post, you’ve been introduced to Apache Storm and how to easily deploy a storm cluster using storm-deploy. But as I mentioned earlier, Storm on its own is not capable of large scale real-time data processing. We need to add Kafka, which acts as the distributed messaging service for storm topology. We will discuss Kafka integration and compare it with Amazon Kinesis in a later post. Stay tuned!


Written by

Chandan Patra

Cloud Computing and Big Data professional with 10 years of experience in pre-sales, architecture, design, build and troubleshooting with best engineering practices. Specialities: Cloud Computing - AWS, DevOps(Chef), Hadoop Ecosystem, Storm & Kafka, ELK Stack, NoSQL, Java, Spring, Hibernate, Web Service

Related Posts

Patrick Navarro
Patrick Navarro
— January 22, 2020

Top 5 AWS Salary Report Findings

At the speed the cloud tech space is developing, it can be hard to keep track of everything that’s happening within the AWS ecosystem. Advances in technology prompt smarter functionality and innovative new products, which in turn give rise to new job roles that have a ripple effect on t...

Read more
  • AWS
  • salary
Alisha Reyes
Alisha Reyes
— January 6, 2020

New on Cloud Academy: Red Hat, Agile, OWASP Labs, Amazon SageMaker Lab, Linux Command Line Lab, SQL, Git Labs, Scrum Master, Azure Architects Lab, and Much More

Happy New Year! We hope you're ready to kick your training in overdrive in 2020 because we have a ton of new content for you. Not only do we have a bunch of new courses, hands-on labs, and lab challenges on AWS, Azure, and Google Cloud, but we also have three new courses on Red Hat, th...

Read more
  • agile
  • AWS
  • Azure
  • Google Cloud Platform
  • Linux
  • programming
  • red hat
  • scrum
Alisha Reyes
Alisha Reyes
— December 24, 2019

Cloud Academy’s Blog Digest: Azure Best Practices, 6 Reasons You Should Get AWS Certified, Google Cloud Certification Prep, and more

Happy Holidays from Cloud Academy We hope you have a wonderful holiday season filled with family, friends, and plenty of food. Here at Cloud Academy, we are thankful for our amazing customer like you.  Since this time of year can be stressful, we’re sharing a few of our latest article...

Read more
  • AWS
  • azure best practices
  • blog digest
  • Cloud Academy
  • Google Cloud
Guy Hummel
— December 12, 2019

Google Cloud Platform Certification: Preparation and Prerequisites

Google Cloud Platform (GCP) has evolved from being a niche player to a serious competitor to Amazon Web Services and Microsoft Azure. In 2019, research firm Gartner placed Google in the Leaders quadrant in its Magic Quadrant for Cloud Infrastructure as a Service for the second consecuti...

Read more
  • AWS
  • Azure
  • Google Cloud Platform
Alisha Reyes
Alisha Reyes
— December 10, 2019

New Lab Challenges: Push Your Skills to the Next Level

Build hands-on experience using real accounts on AWS, Azure, Google Cloud Platform, and more Meaningful cloud skills require more than book knowledge. Hands-on experience is required to translate knowledge into real-world results. We see this time and time again in studies about how pe...

Read more
  • AWS
  • Azure
  • Google Cloud
  • hands-on
  • labs
Alisha Reyes
Alisha Reyes
— December 5, 2019

New on Cloud Academy: AWS Solution Architect Lab Challenge, Azure Hands-on Labs, Foundation Certificate in Cyber Security, and Much More

Now that Thanksgiving is over and the craziness of Black Friday has died down, it's now time for the busiest season of the year. Whether you're a last-minute shopper or you already have your shopping done, the holidays bring so much more excitement than any other time of year. Since our...

Read more
  • AWS
  • AWS solution architect
  • AZ-203
  • Azure
  • cyber security
  • FCCS
  • Foundation Certificate in Cyber Security
  • Google Cloud Platform
  • Kubernetes
Cloud Academy Team
— December 4, 2019

Understanding Enterprise Cloud Migration

What is enterprise cloud migration? Cloud migration is about moving your data, applications, and even infrastructure from your on-premises computers or infrastructure to a virtual pool of on-demand, shared resources that offer compute, storage, and network services at scale. Why d...

Read more
  • AWS
  • Azure
  • Data Migration
Wendy Dessler
Wendy Dessler
— November 27, 2019

6 Reasons Why You Should Get an AWS Certification This Year

In the past decade, the rise of cloud computing has been undeniable. Businesses of all sizes are moving their infrastructure and applications to the cloud. This is partly because the cloud allows businesses and their employees to access important information from just about anywhere. ...

Read more
  • AWS
  • Certifications
  • certified
Andrea Colangelo
— November 26, 2019

AWS Regions and Availability Zones: The Simplest Explanation You Will Ever Find Around

The basics of AWS Regions and Availability Zones We’re going to treat this article as a sort of AWS 101 — it’ll be a quick primer on AWS Regions and Availability Zones that will be useful for understanding the basics of how AWS infrastructure is organized. We’ll define each section,...

Read more
  • AWS
Dzenan Dzevlan
— November 20, 2019

Application Load Balancer vs. Classic Load Balancer

What is an Elastic Load Balancer? This post covers basics of what an Elastic Load Balancer is, and two of its examples: Application Load Balancers and Classic Load Balancers. For additional information — including a comparison that explains Network Load Balancers — check out our post o...

Read more
  • ALB
  • Application Load Balancer
  • AWS
  • Elastic Load Balancer
  • ELB
Albert Qian
Albert Qian
— November 13, 2019

Advantages and Disadvantages of Microservices Architecture

What are microservices? Let's start our discussion by setting a foundation of what microservices are. Microservices are a way of breaking large software projects into loosely coupled modules, which communicate with each other through simple Application Programming Interfaces (APIs). ...

Read more
  • AWS
  • Docker
  • Kubernetes
  • Microservices
Nisar Ahmad
Nisar Ahmad
— November 12, 2019

Kubernetes Services: AWS vs. Azure vs. Google Cloud

Kubernetes is a popular open-source container orchestration platform that allows us to deploy and manage multi-container applications at scale. Businesses are rapidly adopting this revolutionary technology to modernize their applications. Cloud service providers — such as Amazon Web Ser...

Read more
  • AWS
  • Azure
  • Google Cloud
  • Kubernetes