Skip to main content

SystemTap: Working With System Monitoring Scripts

This is the third and final part of our SystemTap series. This article assumes that you are familiar with SystemTap basics and that you have installed Docker on your AWS EC2 instance with a minimal Red Hat Enterprise Linux 7 platform container. Now we’ll explore working with actual SystemTap scripts to monitor processes and events.

Locating the sample SystemTap scripts

Writing SystemTap scripts for the first time can be a rather daunting experience, especially if you do not have much development experience. Fortunately, SystemTap comes with a large collection of sample scripts that you can use right out of the box. These scripts are all archived into the systemtap-client RPM package. The package is installed, along with other related RPM packages, when you install the SystemTap package.

$ rpm -q --whatrequires systemtap-client
systemtap-2.6-10.el7_1.x86_64

To find out where the examples are stored, we can list the files in the systemtap-client package.

$ rpm -ql systemtap-client | grep examples | head -5
/usr/share/doc/systemtap-client-2.6/examples
/usr/share/doc/systemtap-client-2.6/examples/README
/usr/share/doc/systemtap-client-2.6/examples/general
/usr/share/doc/systemtap-client-2.6/examples/general/alias_suffixes.meta
/usr/share/doc/systemtap-client-2.6/examples/general/alias_suffixes.stp

Once inside the examples directory, take a quick look at the index.txt file, which contains an index of all the examples, along with a short description of what each does, and instructions.

$ cd /usr/share/doc/systemtap-client-2.6/examples
$ head index.txt
SYSTEMTAP EXAMPLES INDEX
(see also keyword-index.txt)
general/alias_suffixes.stp - Count I/O Syscalls using Alias Suffixes
keywords: io statistics
  alias_suffixes.stp is a demonstration of how alias suffixes in the
  systemtap language might be used. The script tracks the wall clock
  time for each invocation of the system calls open, close, read, and
  write. When the script exists it prints out the minimum, average, and

We will run these examples on our docker service and the container. So the output examples below will make sense to you, remember that “PID 1752” refers to the docker service, and “PID 4847” refers to the docker container.

$ ps aux | grep docker | head -2
$ ps aux | grep docker | head -2
root 1752 0.2 2.2 510948 22644 ? Ssl 04:17 0:01 /usr/bin/docker -d --selinux-enabled --add-registry registry.access.redhat.com
root 1752 0.2 2.2 510948 22644 ? Ssl 04:17 0:01 /usr/bin/docker -d --selinux-enabled --add-registry registry.access.redhat.com
ec2-user 4847 0.0 0.7 136348 7412 pts/0 Sl+ 04:27 0:00 docker run -ti rhel7 /bin/bash

pfiles.stp

The pfiles.stp script was written to produce outputs similar to a well-known Solaris tool. It reports on all open files, selected by the process ID. This tool is useful because it gives you more detail than what you would get by looking at the /proc/PID/fd directory, or by using the netstat command.

pfiles.stp is able to list all the open file descriptors along with permissions, user and group IDs, and flags used with the open(3) function call. We also get information about things like open sockets, the peername, and sock options.

$ stap -g pfiles.stp -x 4847 # docker service
  4847: docker
  Current rlimit: 256 file descriptors
   0: S_IFCHR mode:0620 dev:0,11 ino:3 uid:1000 gid:1000 rdev:136,0
      O_RDWR|O_LARGEFILE
      /dev/pts/0
   1: S_IFCHR mode:0620 dev:0,11 ino:3 uid:1000 gid:1000 rdev:136,0
      O_RDWR|O_LARGEFILE
      /dev/pts/0
   2: S_IFCHR mode:0620 dev:0,11 ino:3 uid:1000 gid:1000 rdev:136,0
      O_RDWR|O_LARGEFILE
      /dev/pts/0
   3: S_IFSOCK mode:0777 dev:0,6 ino:67819 uid:1000 gid:1000 rdev:0,0
      O_RDWR|O_NONBLOCK FD_CLOEXEC
      socket:[67819]
      SO_BROADCAST,SO_TYPE(2),SO_SNDBUF(212992),SO_RCVBUF(212992)
        sockname: AF_UNIX
        peername: AF_UNIX /run/systemd/journal/socket
   4:  mode:0600 dev:0,9 ino:4680 uid:1000 gid:1000 rdev:0,0
      O_RDWR FD_CLOEXEC
      anon_inode:[eventpoll]
   5: S_IFSOCK mode:0777 dev:0,6 ino:67907 uid:1000 gid:1000 rdev:0,0
      O_RDWR|O_NONBLOCK FD_CLOEXEC
      socket:[67907]
      SO_BROADCAST,SO_TYPE(1),SO_SNDBUF(212992),SO_RCVBUF(212992)
        sockname: AF_UNIX
        peername: AF_UNIX /var/run/docker.sock
        peercred pid: 1752
   6: S_IFSOCK mode:0777 dev:0,6 ino:67820 uid:1000 gid:1000 rdev:0,0
      O_RDWR|O_NONBLOCK FD_CLOEXEC
      socket:[67820]
      SO_BROADCAST,SO_TYPE(1),SO_SNDBUF(212992),SO_RCVBUF(212992)
        sockname: AF_UNIX
        peername: AF_UNIX /var/run/docker.sock
        peercred pid: 1752

plimit.stp

The plimit.stp script is another tool inspired by the Solaris world. You can use the script to display the user limits of any running process in the instance. This is useful if you are trying to troubleshoot a process that was not started on the command-line. For example, if a process crashes randomly, and you were unable to capture the coredump of the process, running plimit.stp will tell you the user limits of the process without modifying any files.

$ stap -g plimit.stp -x 4847 # docker container
4847:  -docker
 resource                    current    maximum
coredump(blocks)            0          unlimited
data(bytes)                 unlimited  unlimited
max nice                    0          0
file size(blocks)           unlimited  unlimited
pending signals             3836       3836
max locked memory(bytes)    65536      65536
max memory size(bytes)      unlimited  unlimited
open files                  1024       4096
POSIX message queues(bytes) 819200     819200
max rt priority             0          0
stack size(bytes)           8388608    unlimited
cpu time(seconds)           unlimited  unlimited
max user processes          3836       3836
virtual memory(bytes)       unlimited  unlimited
file locks                  unlimited  unlimited

errsnoop.stp

The errsnoop.stp script prints out a list of failing system calls every five seconds. You can find out what these error strings mean by referring to the errno(3) manpages. This is particularly useful if a process takes a long time to start or has trouble accessing certain resources. Here, it’s interesting to see that our docker service is unable to open /proc/stat:

$ ./errsnoop.stp | grep docker
   5  13/EACCES                 open          docker  1752 "/proc/stat", O_RDONLY|O_CLOEXEC
   5 128/EKEYREVOKED            read          docker  1752 13, 0xc20814f800, 128
   5   1/EPERM                 futex          docker  1752 0x12c4100, FUTEX_WAKE, 1
   5   1/EPERM                 futex          docker  1752 0xc208582b58, FUTEX_WAKE, 1
   1 110/ETIMEDOUT             futex          docker  1752 0x12c3db8, FUTEX_WAIT, 0, [0.999796991]
   1 110/ETIMEDOUT             futex          docker  1752 0x12c3db8, FUTEX_WAIT, 0, [0.999827729]
   1 110/ETIMEDOUT             futex          docker  1752 0x12c3db8, FUTEX_WAIT, 0, [0.999799954]
   1 110/ETIMEDOUT             futex          docker  1752 0x12c3db8, FUTEX_WAIT, 0, [0.999841908]

procmod_watcher.stp

The procmod_watcher.stp script logs whenever a process is created or terminated and whenever a kernel module is loaded or unloaded.

In this example, we ran the script with the command “sudo systemctl restart docker.” Unless you are very familiar with systemctl, it may not be so easy to figure out exactly what systemctl is doing when you restart docker. Fortunately, SystemTap can help:

$ stap procmod_watcher.stp -c "sudo systemctl restart docker" | grep docker
   0.011810: EXEC: (8171) stapio: file "/usr/local/bin/sudo" "systemctl" "restart" "docker"
   0.011819: EXEC: (8171) stapio: file "/usr/bin/sudo" "systemctl" "restart" "docker"
   0.017636: EXEC: (8174) sudo: file "/bin/systemctl" "restart" "docker"
   0.035394: EXIT: (8114) docker: exit code 0
   0.035434: EXIT: (8114) docker: exit code 0
   0.035451: EXIT: (8114) docker: exit code 0
   0.035456: EXIT: (8114) docker: exit code 0
   0.035460: EXIT: (8114) docker: exit code 0
   0.035468: EXIT: (8114) docker: exit code 0
   0.041299: EXEC: (8178) (ge-setup): file "/usr/bin/docker-storage-setup"
   0.045473: EXEC: (8179) docker-storage-: file "/usr/bin/awk" "$2 ~ /^\\/$/ && $1 !~ /rootfs/ { print $1 }" "/proc/mounts"
   0.046951: EXEC: (8181) docker-storage-: file "/usr/sbin/lvs" "--noheadings" "-o" "vg_name" "/dev/xvda2"
   0.049275: EXEC: (8182) docker-storage-: file "/usr/bin/sed" "-e" "s/^ *//" "-e" "s/ *$//"
   0.053543: EXIT: (8180) docker-storage-: exit code 0
   0.054163: EXEC: (8186) docker-storage-: file "/usr/bin/awk" "$2 ~ /^$/ { print $1 }"
   0.054828: EXEC: (8185) docker-storage-: file "/usr/sbin/pvs" "--noheadings" "-o" "pv_name,vg_name"
   0.060271: EXIT: (8184) docker-storage-: exit code 0
   0.060702: EXEC: (8188) docker-storage-: file "/usr/bin/grep" "-e" "^DOCKER_STORAGE_OPTIONS=.*dm\\.datadev" "-e" "^DOCKER_STORAGE_OPTIONS=.*dm\\.metadatadev" "/etc/sysconfig/docker-storage"
   0.062484: EXEC: (8192) docker-storage-: file "/usr/bin/grep" "-e" "^DOCKER_STORAGE_OPTIONS=" "/etc/sysconfig/docker-storage"
   0.063171: EXEC: (8193) docker-storage-: file "/usr/bin/sed" "s/DOCKER_STORAGE_OPTIONS=//"
   0.063873: EXEC: (8194) docker-storage-: file "/usr/bin/sed" "s/^ *//"
   0.064545: EXIT: (8191) docker-storage-: exit code 0
   0.064686: EXIT: (8190) docker-storage-: exit code 0
   0.064822: EXIT: (8189) docker-storage-: exit code 0
   0.065364: EXEC: (8196) docker-storage-: file "/usr/sbin/lvs" "--noheadings" "-o" "lv_name,lv_attr" "--separator" ","
   0.067287: EXEC: (8197) docker-storage-: file "/usr/bin/sed" "-e" "s/^ *//"
   0.069905: EXIT: (8195) docker-storage-: exit code 0
   0.070225: EXEC: (8199) docker-storage-: file "/usr/sbin/lvs" "-a" "/docker-poolmeta" "--noheadings"
   0.074710: EXIT: (8201) docker-storage-: exit code 0
   0.075442: EXEC: (8202) docker-storage-: file "/usr/sbin/vgs" "--noheadings" "--nosuffix" "--units" "b" "-o" "vg_free"
   0.079933: EXEC: (8206) docker-storage-: file "/usr/sbin/vgs" "--noheadings" "--nosuffix" "--units" "b" "-o" "vg_free"
   0.084066: EXIT: (8205) docker-storage-: exit code 0
   0.084248: EXIT: (8204) docker-storage-: exit code 0
   0.084526: EXEC: (8208) docker-storage-: file "/usr/sbin/lvcreate" "-y" "-L" "2G" "-n" "docker-pool"
   0.088921: EXIT: (8178) docker-storage-: exit code 3
   0.092796: EXEC: (8210) (docker): file "/usr/bin/docker" "-d" "--selinux-enabled" "--add-registry" "registry.access.redhat.com"
   0.136584: EXEC: (8232) docker: file "/usr/sbin/blkid" "-s" "UUID" "-o" "value" "/dev/mapper/docker-202:2-51421425-base"
   0.143531: EXEC: (8235) docker: file "/usr/sbin/modprobe" "-va" "bridge" "nf_nat" "br_netfilter"
   0.150252: EXEC: (8237) docker: file "/usr/sbin/iptables" "--wait" "-L" "-n"
   0.152227: EXEC: (8238) docker: file "/usr/sbin/iptables" "--wait" "-t" "nat" "-D" "PREROUTING" "-m" "addrtype" "--dst-type" "LOCAL" "-j" "DOCKER"
   0.153454: EXEC: (8239) docker: file "/usr/sbin/iptables" "--wait" "-t" "nat" "-D" "OUTPUT" "-m" "addrtype" "--dst-type" "LOCAL" "!" "--dst" "127.0.0.0/8" "-j" "DOCKER"
   0.154539: EXEC: (8240) docker: file "/usr/sbin/iptables" "--wait" "-t" "nat" "-D" "OUTPUT" "-m" "addrtype" "--dst-type" "LOCAL" "-j" "DOCKER"
   0.155566: EXEC: (8241) docker: file "/usr/sbin/iptables" "--wait" "-t" "nat" "-D" "PREROUTING"
   0.157902: EXEC: (8242) docker: file "/usr/sbin/iptables" "--wait" "-t" "nat" "-D" "OUTPUT"
   0.158890: EXEC: (8243) docker: file "/usr/sbin/iptables" "--wait" "-t" "nat" "-F" "DOCKER"
   0.159845: EXEC: (8244) docker: file "/usr/sbin/iptables" "--wait" "-t" "nat" "-X" "DOCKER"
   0.161416: EXEC: (8245) docker: file "/usr/sbin/iptables" "--wait" "-t" "nat" "-C" "POSTROUTING" "-s" "172.17.42.1/16" "!" "-o" "docker0" "-j" "MASQUERADE"
   0.162433: EXEC: (8246) docker: file "/usr/sbin/iptables" "--wait" "-D" "FORWARD" "-i" "docker0" "-o" "docker0" "-j" "DROP"
   0.163386: EXEC: (8247) docker: file "/usr/sbin/iptables" "--wait" "-t" "filter" "-C" "FORWARD" "-i" "docker0" "-o" "docker0" "-j" "ACCEPT"
   0.164340: EXEC: (8248) docker: file "/usr/sbin/iptables" "--wait" "-t" "filter" "-C" "FORWARD" "-i" "docker0" "!" "-o" "docker0" "-j" "ACCEPT"
   0.165282: EXEC: (8249) docker: file "/usr/sbin/iptables" "--wait" "-t" "filter" "-C" "FORWARD" "-o" "docker0" "-m" "conntrack" "--ctstate" "RELATED,ESTABLISHED" "-j" "ACCEPT"
   0.166313: EXEC: (8250) docker: file "/usr/sbin/iptables" "--wait" "-t" "nat" "-n" "-L" "DOCKER"
   0.167186: EXEC: (8251) docker: file "/usr/sbin/iptables" "--wait" "-t" "nat" "-N" "DOCKER"
   0.168139: EXEC: (8252) docker: file "/usr/sbin/iptables" "--wait" "-t" "nat" "-C" "PREROUTING" "-m" "addrtype" "--dst-type" "LOCAL" "-j" "DOCKER"
   0.169198: EXEC: (8253) docker: file "/usr/sbin/iptables" "-t" "nat" "-S" "PREROUTING"
   0.170098: EXEC: (8254) docker: file "/usr/sbin/iptables" "--wait" "-t" "nat" "-A" "PREROUTING" "-m" "addrtype" "--dst-type" "LOCAL" "-j" "DOCKER"
   0.171181: EXEC: (8255) docker: file "/usr/sbin/iptables" "--wait" "-t" "nat" "-C" "OUTPUT" "-m" "addrtype" "--dst-type" "LOCAL" "-j" "DOCKER" "!" "--dst" "127.0.0.0/8"
   0.172222: EXEC: (8256) docker: file "/usr/sbin/iptables" "-t" "nat" "-S" "OUTPUT"
   0.173137: EXEC: (8257) docker: file "/usr/sbin/iptables" "--wait" "-t" "nat" "-A" "OUTPUT" "-m" "addrtype" "--dst-type" "LOCAL" "-j" "DOCKER" "!" "--dst" "127.0.0.0/8"
   0.174241: EXEC: (8258) docker: file "/usr/sbin/iptables" "--wait" "-t" "filter" "-n" "-L" "DOCKER"
   0.175224: EXEC: (8259) docker: file "/usr/sbin/iptables" "--wait" "-t" "filter" "-C" "FORWARD" "-o" "docker0" "-j" "DOCKER"
WARNING: Number of errors: 0, skipped probes: 2

I do wonder, however, why we are not using firewall-cmd – since that is the new way to interact with netfilter. Perhaps you might have some insights to share in our comments.

I hope this gives you a sense of just how powerful SystemTap can be. Let this be the beginning of your learning journey.

Avatar

Written by

Eugene Teo

Eugene Teo is a director of security at a US-based technology company. He is interested in applying machine learning techniques to solve problems in the security domain.

Related Posts

Avatar
Stuart Scott
— July 18, 2019

AWS Fundamentals: Understanding Compute, Storage, Database, Networking & Security

If you are just starting out on your journey toward mastering AWS cloud computing, then your first stop should be to understand the AWS fundamentals. This will enable you to get a solid foundation to then expand your knowledge across the entire AWS service catalog.   It can be both d...

Read more
  • AWS
  • Compute
  • Database
  • fundamentals
  • networking
  • Security
  • Storage
Avatar
Adam Hawkins
— July 17, 2019

How to Become a DevOps Engineer

The DevOps Handbook introduces DevOps as a framework for improving the process for converting a business hypothesis into a technology-enabled service that delivers value to the customer. This process is called the value stream. Accelerate finds that applying DevOps principles of flow, f...

Read more
  • AWS
  • AWS Certifications
  • DevOps
  • DevOps Foundation Certification
  • Engineer
  • Kubernetes
Avatar
Stuart Scott
— July 2, 2019

AWS Machine Learning Services

The speed at which machine learning (ML) is evolving within the cloud industry is exponentially growing, and public cloud providers such as AWS are releasing more and more services and feature updates to run in parallel with the trend and demand of this technology within organizations t...

Read more
  • Amazon Machine Learning
  • AWS
  • AWS re:Invent
  • Machine Learning
Avatar
Stuart Scott
— June 27, 2019

AWS Control Tower & VPC Traffic Mirroring

AWS re:Inforce 2019 is a two-day conference for security, identity, and compliance learning and community building. This year's keynote, presented by AWS Vice President and CIO, Stephen Schmidt, announced the general availability of AWS Control Tower and the new VPC Traffic Mirroring fe...

Read more
  • AWS
  • re:Inforce 2019
  • traffic mirroring
  • VPC
Avatar
Stuart Scott
— June 20, 2019

Working with AWS Networking & Amazon VPC

Being able to architect your own isolated segment of AWS is a simple process using VPCs; understanding how to architect its related networking components and connectivity architecture is key to making it a powerful service. Many services within Amazon Web Services (AWS) require you t...

Read more
  • AWS
  • VPC
Avatar
Stuart Scott
— June 19, 2019

AWS Compute Fundamentals Update

AWS is renowned for the rate at which it reinvents, revolutionizes, and meets customer demands and expectations through its continuous cycle of feature and service updates. With hundreds of updates a month, it can be difficult to stay on top of all the changes made available.   Here ...

Read more
  • AWS
Jeff Hyatt
Jeff Hyatt
— June 18, 2019

10 Steps for an Effective Reserved Instances Strategy

Amazon Web Services (AWS) offers three different ways to pay for EC2 Instances: On-Demand, Reserved Instances, and Spot Instances. This article will focus on effective strategies for purchasing Reserved Instances. While most of the major cloud platforms offer pre-pay and reservation dis...

Read more
  • AWS
  • EC2
Joe Nemer
Joe Nemer
— June 18, 2019

AWS Certification Practice Exam: What to Expect from Test Questions

If you’re building applications on the AWS cloud or looking to get started in cloud computing, certification is a way to build deep knowledge in key services unique to the AWS platform. AWS currently offers 11 certifications that cover major cloud roles including Solutions Architect, De...

Read more
  • AWS
  • AWS Certifications
Avatar
John Chell
— June 13, 2019

AWS Certified Solutions Architect Associate: A Study Guide

The AWS Solutions Architect - Associate Certification (or Sol Arch Associate for short) offers some clear benefits: Increases marketability to employers Provides solid credentials in a growing industry (with projected growth of as much as 70 percent in five years) Market anal...

Read more
  • AWS
  • AWS Certifications
Chris Gambino and Joe Niemiec
Chris Gambino and Joe Niemiec
— June 11, 2019

Moving Data to S3 with Apache NiFi

Moving data to the cloud is one of the cornerstones of any cloud migration. Apache NiFi is an open source tool that enables you to easily move and process data using a graphical user interface (GUI).  In this blog post, we will examine a simple way to move data to the cloud using NiFi c...

Read more
  • AWS
  • S3
Avatar
Chandan Patra
— June 11, 2019

Amazon DynamoDB: 10 Things You Should Know

Amazon DynamoDB is a managed NoSQL service with strong consistency and predictable performance that shields users from the complexities of manual setup. Whether or not you've actually used a NoSQL data store yourself, it's probably a good idea to make sure you fully understand the key ...

Read more
  • AWS
  • DynamoDB
Avatar
Andrew Larkin
— June 6, 2019

The 11 AWS Certifications: Which is Right for You and Your Team?

As companies increasingly shift workloads to the public cloud, cloud computing has moved from a nice-to-have to a core competency in the enterprise. This shift requires a new set of skills to design, deploy, and manage applications in cloud computing. As the market leader and most ma...

Read more
  • AWS
  • AWS Certifications