Skip to main content

What is Amazon Machine Learning? How to Get Started

The phrase machine learning seems to appear alongside every new technology or service. Despite its popularity, many people still don’t understand exactly what machine learning means, nor how to make practical use of it.

Today, we will explain the basics of machine learning, introduce you to Amazon Machine Learning, and show you how you can use it to improve your business through Amazon Web Services and their machine learning utility.

What is machine learning?

Machine learning is all around us. Believe it or not, each time we use our smartphones or computers, we’re using some form of machine learning. Of course, we’re not aware of the computing potential that is observing, tracking, and analyzing our online behavior on a daily basis. Servers all over the world are processing massive volumes of data using machine learning to find out what we’ll do next, where we’ll go, and what we’ll click on. The information that this data is revealing about us and our habits can be worth a fortune.

Machine learning is closely related to artificial intelligence, data mining, and deep learning, but it has a different focus. The main focus of machine learning is the development of computer programs that can automatically change when exposed to new data. WhatIs.com defines machine learning as “a type of artificial intelligence (AI) that provides computers with the ability to learn without being explicitly programmed.” In other words, machine learning uses massive amounts of data to detect patterns, and when the repetition is recognized, computers can adjust the actions of their programs according to the newly identified behavior. To simplify this even further, we could say that it takes past patterns to predict future patterns or behaviors.

What is machine learning?

Machine learning was born out of pattern recognition and computational learning theory in artificial intelligence. It is also closely related to computational statistics, mathematical modeling, and composite algorithms.

Creating a model for pattern search requires developing a sophisticated mathematical model that will serve as the basis of the pattern. This task can be quite time-consuming and difficult for a small team that wants to exploit such a powerful resource.

Different mathematical models are the starting point for machine learning. Computers are using them to analyze data and learn from previous computations. The quality of the design and data portions enable a computer to produce reliable, repeatable decisions and results that you can use to improve your work.

The results of machine learning data analysis can help an organization identify profitable opportunities, avoid unknown risks, and make conclusions that can improve their decision-making processes.

Where are we already using machine learning?

Given the complexity and processing power needed to apply machine learning, you might think that only large corporations and institutions are using it. And you wouldn’t be far from the truth. However, thanks to automatic platforms such as Amazon Machine Learning, even small teams can get their hands on this exceptional technology. Let’s look at where we can find machine learning in the world around us.

Practical applications of machine learning technology are at work in some of the applications that we use on a daily basis.

How many times have you checked your Facebook feed today? The News Feed that you see there is generated by machine learning algorithms working in the background. They track your behavior and interactions with friends to find patterns and serve information that will be interesting to you. For example, you may have noticed that you see a lot of info in your feed about the people whose posts or photos you like or comment on, and less about the people with whom you rarely interact.

Where are we already using machine learning?

A similar example is Twitter’s “You might like,” “Who to follow,” and “While you were away” feeds. They are also making tailored suggestions based on your interests and activities while you like and share content on the platform.

Of course, it’s not just social networks. Netflix and Amazon Prime are also using machine learning to suggest what to watch next based on the movies, series, and programs that we have seen so far.

E-commerce websites such as Amazon.com and Aliexpress.com are also making suggestions for what to buy next by tracking our previous purchases. They are even sending us emails with good deals and discounts on items that we have checked out along the way, convincing us that this is the best deal for us.

Machine learning also has a significant role in other areas, namely fraud detection and online security. Machine learning is very efficient in detecting fraudulent behavior. Thanks to such actions, the internet is a much safer place today than it was only a decade ago.

It also has extensive application in government institutions, healthcare organizations, finance and banking, transportation, energy, and many other important areas of our lives.

How can you use machine learning for your project?

Machine learning is a powerful resource that can be applied in many different areas, from serving your customers with the most desirable content at any time, to forecasting stocks rated on the financial market. The question is, how you can use such a powerful resource for your projects without spending a fortune?

It’s understandable to think that you’ll need to invest a lot of time and money before you could be able to use machine learning in your projects. Just to get started you need to have:

  1. A super team of top mathematicians to develop a machine learning model and algorithms
  2. At least a dozen ninja developers who will implement this algorithm in your app/project
  3. A large set of quality data that you can use for analysis

When you sum it all up, it is quite an investment to have all of these resources at your disposal.

But what if there is a way to get the most of the necessary requirements without spending thousands of dollars before you even start your project? Enter the Amazon Machine Learning platform.

What is Amazon Machine Learning?

The Amazon Machine Learning service provides you with all of the equipment and tools you need to learn how to use machine learning. The service provides a rich toolset that will guide you through each step of the way, from creating machine learning models to data analysis, and applying results to your application. You will find all of the key concepts of Amazon Machine Learning here, as well as setup instructions, tutorials, training materials, data evaluation, analysis models, and many other useful resources.

For use cases and a real example for Python take a look at our post on Amazon Machine Learning.

What is Amazon Machine Learning?

How to use Amazon Machine Learning?

To be able to use the service, you’ll first need to create your machine learning model. The platform provides visualization tools and wizards that will help you start building your ML model without forcing you to learn all the complex algorithms. These tools will help you evaluate your models and fine-tune them if needed.

If you don’t need a custom model, you can use one of the predefined models for:

  • Fraud detection: Discover any attempts of abusive use of your app or website
  • Demand forecasting: Predict the need for your services or offerings
  • Predictive customer support: Make it easier to reply to the most common questions
  • Click predictions: See where your visitors will click next

Once you decide which model you will be using (custom or predefined), Amazon Machine Learning offers a simple API that you can implement in your app. You don’t need to develop a sophisticated infrastructure, or to write tons of code. All you have to do is apply the API, and works out of the box.

To be able to use your machine learning model on your current dataset, you will need to create a connection to read the data from Amazon S3, Amazon Redshift, or Amazon RDS (Relational Database Service). Please note: You will not be able to import data from elsewhere, so you need to use one of these three services to be able to apply your ML model.

The next step is to check the data quality. You can use Amazon visual tools to ensure that you have a quality data batch. The character of the information is quite relevant. If you have insufficient information, you can end up with bad predictions that will affect the overall quality of resulting actions. So, make sure that you have the best data set you can get.

Finally, when you start the entire process you can decide whether you want to have batch predictions for your entire data set at once or real-time data prediction. Amazon Machine Learning can provide you with both. It’s up to you to decide which best fits your requirements.

Where can I learn how to work with Amazon Machine Learning?

The official Amazon website has a wealth of material on machine learning, including handy examples, tutorials, and models that you can analyze to see some of the best practices.

If you need more practice than you can get by using the AWS website, we recommend the Cloud Academy Amazon Machine Learning Lab. It is specialized for human activity recognition, and it will give you some excellent examples and use cases for Amazon Machine Learning.

Where can I learn how to work with Amazon Machine Learning?

How much will it cost me?

We have some good news for you: The pricing for using Amazon Machine Learning is flexible. You will pay only for the resources you’re using and spending. There are no upfront costs and no massive investments on the compound infrastructure. Check the official AWS pricing page for more details.

With Amazon Machine Learning, the learning process will cost you far less, and the primary resource that you will have to invest is your time in getting you and your team up to speed.

Next steps: Getting started with machine learning

Machine learning, artificial intelligence, deep learning, and big data analysis are the key concepts that will shape our future and help us make quality decisions. One of the best ways to take advantage of the power of machine learning for your projects and your business is the Amazon Web Services platform.

Don’t forget to check out these Cloud Academy resources for learning more about Amazon Machine Learning:
Introduction to the Principles and Practice of Amazon Machine Learning

Course: Introduction to the Principles and Practice of Amazon Machine Learning
This in-depth introduction to the principles and practice of AML covers the basics of ML, working with data sources and how to manipulate data in Amazon Machine Learning to ensure a successful model, generating accurate predictions, and more.

 

 

 

 

 

Amazon Machine Learning for Human Activity Recognition

Hands-on Lab: Amazon Machine Learning for Human Activity Recognition
This lab will give you a general idea of how to use Amazon Machine Learning to build and use your own models. After a brief overview of the main machine learning concepts, we’ll use an open dataset from UCI to train and use a real-world model for HAR (Human Activity Recognition). We will walk through the whole process, from the dataset analysis and Datasource creation, all the way to model training/evaluation and a real Python script to generate real-time predictions.

 

 

 

Avatar

Written by

Ivana Sabo

Ivana is Community Manager in Business Incubator Novi Sad by day and Content Writer by night. She is interested in startups, entrepreneurship, all things Cloud, internet marketing, and event organization. When she is not working Ivana enjoys adventurous life with her family.

Related Posts

Jeff Hyatt
Jeff Hyatt
— June 18, 2019

10 Steps for an Effective Reserved Instances Strategy

Amazon Web Services (AWS) offers three different ways to pay for EC2 Instances: On-Demand, Reserved Instances, and Spot Instances. This article will focus on effective strategies for purchasing Reserved Instances. While most of the major cloud platforms offer pre-pay and reservation dis...

Read more
  • AWS
  • EC2
Joe Nemer
Joe Nemer
— June 18, 2019

AWS Certification Practice Exam: What to Expect from Test Questions

If you’re building applications on the AWS cloud or looking to get started in cloud computing, certification is a way to build deep knowledge in key services unique to the AWS platform. AWS currently offers 11 certifications that cover major cloud roles including Solutions Architect, De...

Read more
  • AWS
  • AWS Certifications
Avatar
John Chell
— June 13, 2019

AWS Certified Solutions Architect Associate: A Study Guide

The AWS Solutions Architect - Associate Certification (or Sol Arch Associate for short) offers some clear benefits: Increases marketability to employers Provides solid credentials in a growing industry (with projected growth of as much as 70 percent in five years) Market anal...

Read more
  • AWS
  • AWS Certifications
Chris Gambino and Joe Niemiec
Chris Gambino and Joe Niemiec
— June 11, 2019

Moving Data to S3 with Apache NiFi

Moving data to the cloud is one of the cornerstones of any cloud migration. Apache NiFi is an open source tool that enables you to easily move and process data using a graphical user interface (GUI).  In this blog post, we will examine a simple way to move data to the cloud using NiFi c...

Read more
  • AWS
  • S3
Avatar
Chandan Patra
— June 11, 2019

Amazon DynamoDB: 10 Things You Should Know

Amazon DynamoDB is a managed NoSQL service with strong consistency and predictable performance that shields users from the complexities of manual setup.Whether or not you've actually used a NoSQL data store yourself, it's probably a good idea to make sure you fully understand the key ...

Read more
  • AWS
  • DynamoDB
Avatar
Andrew Larkin
— June 6, 2019

The 11 AWS Certifications: Which is Right for You and Your Team?

As companies increasingly shift workloads to the public cloud, cloud computing has moved from a nice-to-have to a core competency in the enterprise. This shift requires a new set of skills to design, deploy, and manage applications in cloud computing.As the market leader and most ma...

Read more
  • AWS
  • AWS Certifications
Sam Ghardashem
Sam Ghardashem
— May 15, 2019

Aviatrix Integration of a NextGen Firewall in AWS Transit Gateway

Learn how Aviatrix’s intelligent orchestration and control eliminates unwanted tradeoffs encountered when deploying Palo Alto Networks VM-Series Firewalls with AWS Transit Gateway.Deploying any next generation firewall in a public cloud environment is challenging, not because of the f...

Read more
  • AWS
Joe Nemer
Joe Nemer
— May 3, 2019

AWS Config Best Practices for Compliance

Use AWS Config the Right Way for Successful ComplianceIt’s well-known that AWS Config is a powerful service for monitoring all changes across your resources. As AWS Config has constantly evolved and improved over the years, it has transformed into a true powerhouse for monitoring your...

Read more
  • AWS
  • Compliance
Avatar
Francesca Vigliani
— April 30, 2019

Cloud Academy is Coming to the AWS Summits in Atlanta, London, and Chicago

Cloud Academy is a proud sponsor of the 2019 AWS Summits in Atlanta, London, and Chicago. We hope you plan to attend these free events that bring the cloud computing community together to connect, collaborate, and learn about AWS. These events are all about learning. You can learn how t...

Read more
  • AWS
  • AWS Summits
Paul Hortop
Paul Hortop
— April 2, 2019

How to Monitor Your AWS Infrastructure

The AWS cloud platform has made it easier than ever to be flexible, efficient, and cost-effective. However, monitoring your AWS infrastructure is the key to getting all of these benefits. Realizing these benefits requires that you follow AWS best practices which constantly change as AWS...

Read more
  • AWS
  • Monitoring
Joe Nemer
Joe Nemer
— April 1, 2019

AWS EC2 Instance Types Explained

Amazon Web Services’ resource offerings are constantly changing, and staying on top of their evolution can be a challenge. Elastic Cloud Compute (EC2) instances are one of their core resource offerings, and they form the backbone of most cloud deployments. EC2 instances provide you with...

Read more
  • AWS
  • EC2
Avatar
Nitheesh Poojary
— March 26, 2019

How DNS Works – the Domain Name System (Part One)

Before migrating domains to Amazon's Route53, we should first make sure we properly understand how DNS worksWhile we'll get to AWS's Route53 Domain Name System (DNS) service in the second part of this series, I thought it would be helpful to first make sure that we properly understand...

Read more
  • AWS